Supporting Information

Hybrid phase 1T/2H-MoS₂ with controllable 1T concentration and its promoted hydrogen evolution reaction

Yuxiao Zhang, ^a Yasutaka Kuwahara, ^{abc} Kohsuke Mori, ^{ab} Catherine Louis ^d and Hiromi

Yamashita *ab

^a Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka

University, 2-1 Yamada-oka, Osaka 565-0871, Japan

^b Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University,

Katsura, Kyoto 565-0871, Japan

^c JST, PRESTO, 4-1-8 Hon-Cho, Kawaguchi, Saitama 332-0012, Japan

^d Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7197, Laboratoire de Réactivité

de Surface, 4 Place Jussieu, Tour 43-33, 3ème étage, Case 178, F-75252 Paris, France

Comple	$\mathbf{S}_{\mathrm{BET}}$	V_{total}	
Sample	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	
MoS_2	55.2	0.177	
1T/2H-MoS ₂ (D25)	51.8	0.238	
1T/2H-MoS ₂ (D50)	31.6	0.146	
1T/2H-MoS ₂ (D75)	10.6	0.039	
1T/2H-MoS ₂ (D100)	28.3	0.099	

 $\label{eq:stables} \begin{array}{l} \textbf{Table S1} \ \text{Specific surface area and total pore volume of samples synthesized under different} \\ \text{amount of DMF precursors calculated from N_2 adsorption isotherm data.} \end{array}$

Sample	Onset	Tafel slope	$R_{ct}\left(\Omega\right)$	B (O)
	overpotential (mV)	(mV/dec)		K_{s} (22)
MoS ₂	270.5	363.0	361.3	42.0
1T/2H-MoS ₂ (D25)	243.6	119.9	30.0	13.4
1T/2H-MoS ₂ (D50)	146.6	71.7	20.9	12.1
1T/2H-MoS ₂ (D75)	226.2	161.5	134.3	14.0
1T/2H-MoS ₂ (D100)	240.2	117.1	159.4	8.9

Table S2 Electrochemical performances: onset overpotential (in HER), Talfel slopes (in HER), charge transfer resistance (R_{ct}) and solution resistance (R_s) of MoS₂, 1T/2H-MoS₂ (D25), 1T/2H-MoS₂ (D50), 1T/2H-MoS₂ (D75) and 1T/2H-MoS₂ (D100).

Table S3 Electrochemical performances: onset overpotential (in HER), Talfel slopes (in HER), charge transfer resistance (R_{ct}) and solution resistance (R_s) of MoS₂, 1T/2H-MoS₂ (N50), 1T/2H-MoS₂ (N100), 1T/2H-MoS₂ (N200), 1T/2H-MoS₂ (N400), 1T/2H-MoS₂ (N800) and 1T/2H-MoS₂ (N1600).

Sample	Onset	Tafel slope	$R_{ct}(\Omega)$	P (O)
	overpotential (mV)	(mV/dec)		K_{s} (22)
MoS_2	270.5	363.0	361.3	42.0
1T/2H-MoS ₂ (N50)	225.1	96.8	58.9	11.3
1T/2H-MoS ₂ (N100)	223.2	105.5	71.8	9.7
1T/2H-MoS ₂ (N200)	214.1	66.6	95.0	10.5
1T/2H-MoS ₂ (N400)	236.8	66.5	71.1	10.1
1T/2H-MoS ₂ (N800)	231.1	66.6	88.6	11.8
1T/2H-MoS ₂ (N1600)	264.1	241.9	289.3	12.0

Fig. S1 XANES spectra of $1T/2H-MoS_2$ (D25), $1T/2H-MoS_2$ (D50), $1T/2H-MoS_2$ (D75), $1T/2H-MoS_2$ (D100) and MoS_2 .

Fig. S2 TG/DTA spectra of (a) MoS_2 , (b) $1T/2H-MoS_2$ (D25), (c) $1T/2H-MoS_2$ (D50), (d) $1T/2H-MoS_2$ (D75) and (e) $1T/2H-MoS_2$ (D100).

Fig. S3 S 2p XPS spectra of $1T/2H-MoS_2$ (D25), $1T/2H-MoS_2$ (D50), $1T/2H-MoS_2$ (D75), $1T/2H-MoS_2$ (D100) and MoS_2 .

Fig. S4 (a) High-resolution TEM (HR-TEM) image of 1T/2H-MoS₂, (b) Fast Fourier transform (FFT) patterns from (a). (c), (d) inverse Fourier transform patterns under low frequency and high frequency, respectively.

Fig. S5 Dark-field images of high-resolution TEM focused on (a) lattice spacing of 0.27 nm (2H phase), (b) lattice spacing of 0.24 nm (1T phase) and (c) mixture of two image (green: 1T, red: 2H).

Fig. S6 N_2 adsorption-desorption isotherms of 1T/2H-MoS₂ (D25), 1T/2H-MoS₂ (D50), 1T/2H-MoS₂ (D75), 1T/2H-MoS₂ (D100) and MoS₂.

Fig. S7 Specific activity at -0.35 V of $1T/2H-MoS_2$ (D25), $1T/2H-MoS_2$ (D50), $1T/2H-MoS_2$ (D75), $1T/2H-MoS_2$ (D100) and MoS_2 .

Fig. S8 I-t curve of 1T/2H-MoS₂ (D50) under overpotential of 0.3 V.

Fig. S9 (a) Tafel slopes of 1T/2H-MoS₂ (N50), 1T/2H-MoS₂ (N100), 1T/2H-MoS₂ (N200), 1T/2H-MoS₂ (N400), 1T/2H-MoS₂ (N800), 1T/2H-MoS₂ (N1600), MoS₂ and Pt/C. (b) Nyquist plot (fitted) of 1T/2H-MoS₂ (N50), 1T/2H-MoS₂ (N100), 1T/2H-MoS₂ (N200), 1T/2H-MoS₂ (N400), 1T/2H-MoS₂ (N800), 1T/2H-MoS₂ (N1600) and MoS₂.

Fig. S10 (a) Mo 3d, (b) S 2p XPS spectra of 1T/2H-MoS₂ (N1600), 1T/2H-MoS₂ (N800), 1T/2H-MoS₂ (N400) and MoS₂.

Fig. S11 Geometric structures of the initial state (I) and final state (II) of Tafel reaction and its energetics on (100)-S atoms of 1T-MoS₂ and 1T/2H interface.