Supporting Information

Cytomembrane-mimicking nanocarriers with a scaffold

 consisting of a CD44-targeted endogenous component for effective asparaginase supramolecule deliverySupplementary Information includes:

Methods

Table S1-S4
Figure S1-S3

Methods

1. Preparation of HA-g-PEG

General methods. NMR spectra were recorded with tetramethylsilane as the internal standard. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 600 MHz (Agilent, USA). Chemical shifts are reported in ppm downfield from $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR spectroscopy. $\mathrm{D}_{2} \mathrm{O}$ was used as solvent for HA and HA-g-PEG, and CHCl_{3} for mPEG-glycine-Boc and mPEG-glycine. FT-IR was recorded at room temperature on a Thermo Scientific Nicolet iS50FT-IR spectrometer (USA) using KBr discs in the range of $400-4000 \mathrm{~cm}^{-1}$ region. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on a simultaneous thermal analyzer STA 449C (NETZSCH, Germany) at the heating rate of $10^{\circ} \mathrm{C} /$ min under N_{2} atmosphere in the temperature range of $25-500^{\circ} \mathrm{C}$.
Synthesis of mPEG-glycine-Boc. Dry mPEG ($5.0 \mathrm{~g}, 2.5 \mathrm{mmol}$) and N -Boc-glycine (0.47 $\mathrm{g}, 2.7 \mathrm{mmol}$) was dissolved in 30 mL dichloromethane (DCM), after which 4(dimethylamino) pyridine (DMAP, $0.09 \mathrm{~g}, 0.75 \mathrm{mmol}$) and dicyclohexylcarbodiimide (DCC, $0.62 \mathrm{~g}, 3.0 \mathrm{mmol}$) were added in portions at $0^{\circ} \mathrm{C}$. The reaction mixture was then stirred at $0{ }^{\circ} \mathrm{C}$ for 24 h . After completion, the precipitated white solid was removed by filtration. The filtrate was then evaporated under vacuum. The obtained residue was purified by recrystallization using acetone. The crystallized whited solid was removed by filtration and the filtrate was evaporated and dried to provide mPEG-glycine-Boc as pale yellow solid, $2.23 \mathrm{~g}, 41.1 \%$ yield.
Synthesis of mPEG-glycine. mPEG-glycine-Boc ($0.5 \mathrm{~g}, 0.25 \mathrm{mmol}$) was dissolved in DCM/trifluoroacetic acid (TFA, 1:1) and stirred for 2-3 h. After completion, most of the solvents were removed by evaporation under vacuum. The oily residue was then dissolved in 10 mL NaCl (15\%). Adjust the pH of the solution to ~ 5.0 using 1.0 M NaOH . The insoluble white solid was filtrated and the filtrate was then extracted using $\mathrm{CHCl}_{3}(10$ $\mathrm{mL} \times 3$ times). The organic layer was combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under vacuum. The residue was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ to provide mPEG-glycine as pale yellow oil, $0.27 \mathrm{~g}, 60.3 \%$ yield.
Synthesis of HA-g-PEG. N-hydroxysuccinimide (NHS, $14.386 \mathrm{mg}, 0.125 \mathrm{mmol}$) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC, $47.925 \mathrm{mg}, 0.25 \mathrm{mmol}$) were dissolved in 5 mL hyaluronic acid (HA) aqueous solution ($2 \%, \mathrm{w} / \mathrm{v}$) and stirred for 1 h to form a homogeneous mixture. After that $0.859 \mathrm{~mL} \mathrm{mPEG}-\mathrm{glycine}$ aqueous solution (2%, w / v) was added, stirred under room temperature for 12 h . The reaction mixture was purified by dialysis in water for 72 h (dialysis bag: MWCO 8000-14000). The solution was then evaporated under vacuum and the obtained solid was dried, washed by acetone and CHCl 3 (5 mL , 3 times each). Dry under vacuum to provide the product as pale yellow solid, $0.09 \mathrm{~g}, 75.9 \%$ yield.

2. Preparation of Asp-Cy5.5 and A-S-CmN-Cy5.5

Asp-Cy5.5 was prepared by stirring method, in short, $16 \mu \mathrm{~L}$ of dimethylformamide containing $0.670 \mu \mathrm{~mol}$ Cy5.5-NHS was mixed with $64 \mu \mathrm{~L}$ of Tris-HCL buffer ($50 \mathrm{mmol} / \mathrm{L}$, pH 7.3) consisting of $0.017 \mu \mathrm{~mol}$ Asp. The mixture was allowed to stir magnetically at room temperature in the dark for 24 h . The final mixture was dialyzed against deionized water for 72 h , and then freeze-dried to obtain Asp-Cy5.5.

A-S-CmN-Cy5.5 was prepared according to the preparation method of A-S-CmN (Asp was replaced by Asp-Cy5.5).

Table S1-S4

Table S1. Bioequivalence evaluation of A-S-CmN and free Asp.
Table S2. The fluorescence intensity at maximum wavelength when the mixture of Asp and BSA was set at different ratios.
Table S3. The fluorescence intensity at maximum wavelength when the mixture of B-A-$\mathrm{S}-\mathrm{CmN}$ and BSA was set at different ratios.
Table S4. The fluorescence intensity at maximum wavelength when the mixture of A-SCmN and BSA was set at different ratios.

Table S1. Bioequivalence evaluation of A-S-CmN and free Asp.

Parameter	90% confidential interval calculated	Bioequivalence standard	P value calculated	Bioequivalence
$A U C_{(0 \sim 8 \mathrm{hh})}(\mathrm{U} / \mathrm{mL} \cdot \mathrm{h})$	$77.0 \% \sim 78.5 \%$	$80 \sim 125 \%$	-	No
$A U C_{(0 \sim \sim)}(\mathrm{U} / \mathrm{mL} \cdot \mathrm{h})$	$77.0 \% \sim 78.5 \%$	$80 \sim 125 \%$	-	No
$C_{\max }(\mathrm{U} / \mathrm{mL} \cdot \mathrm{h})$	$94.4 \% \sim 96.0 \%$	$70 \% \sim 143 \%$	-	Yes
$T_{\max }(\mathrm{h})$	-	>0.05	0.001	No

In total: Free Asp was not equivalent to A-S-CmN, and A-S-CmN was better.

Table S2. The fluorescence intensity at maximum wavelength when the mixture of Asp and BSA was set at different ratios.

Asp			Mixture of Asp and BSA			$\mathrm{F}_{3}{ }^{\text {e }}$
Concentration	$\lambda_{\text {max }}{ }^{\text {a }}$	$\mathrm{F}_{1}{ }^{\text {b }}$	Ratio (BSA:Asp)	$\lambda_{\text {max }}{ }^{\text {c }}$	$\mathrm{F}_{2}{ }^{\text {d }}$	
-	-	-	1:0 (BSA $0.5 \mu \mathrm{M})$	343 nm	177.376	-
$2 \mu \mathrm{M}$	328 nm	59.157	1:4	338 nm	243.221	236.533
$3 \mu \mathrm{M}$	328 nm	87.720	1:6	335 nm	270.969	265.096
$4 \mu \mathrm{M}$	319 nm	119.192	1:8	333 nm	289.929	296.568
$5 \mu \mathrm{M}$	320 nm	147.455	1:10	333 nm	322.423	324.831
$6 \mu \mathrm{M}$	319 nm	176.866	1:12	335 nm	352.706	354.242

aFluorescence maximum wavelength of Asp
${ }^{\text {b }}$ Fluorescence intensity of Asp at maximum wavelength
${ }^{\text {cFluorescence maximum wavelength of BSA or the mixture of Asp and BSA }}$ ${ }^{\text {d Fluorescence intensity of mixture of Asp and BSA at maximum wavelength }}$
${ }^{e}$ Fluorescence intensity of Asp plus fluorescence intensity of BSA at maximum wavelength

Table S3. The fluorescence intensity at maximum wavelength when the mixture of B-A-S-CmN and BSA was set at different ratios.

B-A-S-CmN			Mixture of B-A-S-CmN and BSA			$F_{3}{ }^{\text {e }}$
Concentration	$\lambda_{\text {max }}{ }^{\text {a }}$	$\mathrm{F}_{1}{ }^{\text {b }}$	Ratio (BSA:B-A-S-CmN)	$\lambda_{\text {max }}{ }^{\text {c }}$	$\mathrm{F}_{2}{ }^{\text {d }}$	
-	-	-	1:0 (BSA $0.5 \mu \mathrm{M})$	343 nm	177.376	-
$2 \mu \mathrm{M}$	330 nm	12.089	1:4	343 nm	666.690	189.465
$3 \mu \mathrm{M}$	330 nm	15.775	1:6	343 nm	626.148	193.151
$4 \mu \mathrm{M}$	330 nm	13.244	1:8	343 nm	500.572	190.62
$5 \mu \mathrm{M}$	330 nm	17.378	1:10	343 nm	592.572	194.754
$6 \mu \mathrm{M}$	331 nm	15.102	1:12	343 nm	508.136	192.478

${ }^{\text {aF }}$ Fluorescence maximum wavelength of $\mathrm{B}-\mathrm{A}-\mathrm{S}-\mathrm{CmN}$
${ }^{\mathrm{b}}$ Fluorescence intensity of B-A-S-CmN at maximum wavelength
cFluorescence maximum wavelength of BSA or the mixture of B-A-S-CmN and BSA dFluorescence intensity of mixture of B-A-S-CmN and BSA at maximum wavelength
${ }^{e}$ Fluorescence intensity of B-A-S-CmN plus fluorescence intensity of BSA at maximum wavelength

Table S4. The fluorescence intensity at maximum wavelength when the mixture of A-SCmN and BSA was set at different ratios.

A-S-CmN			Mixture of A-S-CmN and BSA			$\mathrm{F}_{3}{ }^{\text {e }}$
Concentration	$\lambda_{\text {max }}{ }^{\text {a }}$	$\mathrm{F}_{1}{ }^{\text {b }}$	Ratio (BSA: A-S-CmN)	$\lambda_{\text {max }}{ }^{\text {c }}$	$\mathrm{F}_{2}{ }^{\text {d }}$	
-	-	-	1:0 (BSA $0.5 \mu \mathrm{M}$)	343 nm	177.376	-
$2 \mu \mathrm{M}$	329 nm	94.109	1:4	340 nm	771.152	271.485
$3 \mu \mathrm{M}$	330 nm	105.828	1:6	338 nm	668.905	283.204
$4 \mu \mathrm{M}$	329 nm	172.411	1:8	338 nm	831.375	349.787
$5 \mu \mathrm{M}$	330 nm	167.34	1:10	335 nm	733.619	344.716
$6 \mu \mathrm{M}$	328 nm	250.999	1:12	334 nm	960.857	428.375

aFluorescence maximum wavelength of $\mathrm{A}-\mathrm{S}-\mathrm{CmN}$
${ }^{\mathrm{b}}$ Fluorescence intensity of $\mathrm{A}-\mathrm{S}-\mathrm{CmN}$ at maximum wavelength
${ }^{\text {c }}$ Fluorescence maximum wavelength of BSA or the mixture of $\mathrm{A}-\mathrm{S}-\mathrm{CmN}$ and BSA dFluorescence intensity of mixture of $A-S-C m N$ and BSA at maximum wavelength eFluorescence intensity of $\mathrm{A}-\mathrm{S}-\mathrm{CmN}$ plus fluorescence intensity of BSA at maximum wavelength

Figure S1-S3

Figure S1. MALDI-TOF spectra of HA-g-PEG.
Figure S2. Size and Zeta potential of A-S-CmN.
Figure S3. Protein-protein docking analysis of interaction between Asp and BSA.

Figure S1. MALDI-TOF spectra of HA-g-PEG.

Figure S2. Size and Zeta potential of A-S-CmN. (A) Size distribution of A-S-CmN. (B) Zeta potential of A-S-CmN.

Figure S3. Protein-protein docking analysis of interaction between Asp and BSA. (A,B) Binging interface of Asp to BSA binding site (A) 1and (B) 2, residues at the interface are shown as the "CPK" illustration.

