Supporting Information

Boosting the energy density of supercapacitors by encapsulating multi-shelled zinc-cobalt-selenide hollow nanospheres cathode and yolk-double shell cobalt-

iron-selenide hollow nanospheres anode in graphene network

Akbar Mohammadi Zardkhoshoui* and Saied Saeed Hosseiny Davarani*

Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.

Corresponding authors: *Tel: +98 21 22431661; Fax: +98 21 22431661; E-mail: <u>ss-hosseiny@sbu.ac.ir</u> (S.S.H. Davarani); and mohammadi.bahadoran@gmail.com (A. Mohammadi Zardkhoshoui)

Fig. S1. Survey spectrum of the G/MSZCS-HS.

Fig. S2. Survey spectrum of the G/YDSCFS-HS.

Fig. S3. CV graphs of bare NF, MSZCS-HS and G/MSZCS-HS electrodes at 60 mV s⁻¹.

Fig. S4. CV graphs of the MSZCS-HS electrode at various scan rates.

Fig. S5. GCD graphs of the MSZCS-HS electrode at various current densities.

Fig. S6. Rate performance of the MSZCS-HS electrode.

Fig. S7. Nyquist graphs of MSZCS-HS and G/MSZCS-HS electrodes.

Fig. S8. Durability of the MSZCS-HS electrode.

Fig. S9. (a) Nyquist graphs of the G/MSZCS-HS electrode before and after cycling. (b) Nyquist graphs of the MSZCS-HS electrode before and after cycling.

Fig. S10. (a) FE-SEM image of the MSZCS-HS electrode after cycling. (b) TEM image of the MSZCS-HS electrode after cycling. (c) FE-SEM image of the G/MSZCS-HS electrode after cycling. (d) TEM image of the G/MSZCS-HS electrode after cycling.

Fig. S11. CV curves of G/YDSCFS-HS and YDSCFS-HS.

Fig. S12. CV curves of the YDSCFS-HS at various scan rates.

Fig. S13. GCD curves of the YDSCFS-HS at various current densities.

Fig. S14. Rate performance of the YDSCFS-HS.

Fig. S15. Nyquist graphs of G/YDSCFS-HS and YDSCFS-HS electrodes.

Fig. S16. Durability of the YDSCFS-HS electrode.

Fig. S17. (a) Nyquist graphs of the G/YDSCFS-HS electrode before and after cycling. (b) Nyquist graphs of the YDSCFS-HS electrode before and after cycling.

Fig. S18. (a) FE-SEM image of the YDSCFS-HS electrode after cycling. (b) TEM image of the YDSCFS-HS electrode after cycling. (c) FE-SEM image of the G/YDSCFS-HS electrode after cycling. (d) TEM image of the G/YDSCFS-HS electrode after cycling.

Table S1. Comparison of the electrochemical performance of G/MSZCS-HS electrode in three and two electrode systems with other previously reported electrodes.

Composition	Capacity 3 and 2 electrodes (mAh g ⁻¹)	Cycles, retention 2 and 3 electrode	ED (W h kg ⁻¹) 2 Electrode	Reference
MnCo ₂ O _{4.5} @Ni(OH) ₂	318 at 3 A g ⁻¹ (3 E) 70.67 at 1 A g ⁻¹ (2 E)	5000, 87.7% (3 E 3000, 90.4% (2 E)	56.53	1
<i>Co</i> ₃ <i>O</i> ₄	209 at 1 A g ⁻¹ (3 E)	3000, 90 (3 E)	41.4	2
NiCo ₂ S ₄	301.1 at 2 A g ⁻¹ (3 E) 80.56 at 1 A g ⁻¹ (2 E)	5000, 93.85% (2 E)	48.65	3
Ni-MOF	123.5 at 1 A g ⁻¹ (3 E)	3000, 90.6% (2 E)	55.8	4
ZnCo ₂ O ₄	78.89 at 1 A g ⁻¹ (3 E) 34.7 at .2 A g ⁻¹ (2 E)		27.78	5
Co ₃ O ₄ /Co(OH) ₂	184.9 at 1 A g ⁻¹ (3 E) 58.9 at 4 A g ⁻¹ (2 E)	5000, 90% (3 E) 5000, 91% (2 E)	37.6	6
Co-Cd-Se	192 (3 E) at 1 A g ⁻¹ 85 (2 E) at 1 A g ⁻¹	1000, 95.2% (3 E) 1000, 80.9% (2 E)	57.6	7
G/MSZCS-HS	376.75 at 2 A g ⁻¹ (3 E) 140.3 at 1 A g ⁻¹ (2 E)	12000, 96.8 (3 E) 12000, 91.7 (2 E)	126.3	This work

References

1 Y.-L. Liu, C. Yan, G.-G. Wang, H.-Y. Zhang, L.-Y. Dang, B.-W. Wu, Z.-Q. Lin, X.-S. An and J. Han, *ACS Appl. Mater. Interfaces* 2019, **11**, 9984-9993.

2 L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li, Z. Jin, J. Wu, Q. Liao, L. Hu, J. Lu, S. Ruan and Y.-J. Zeng, *Electrochim. Acta* 2018, **281**, 189-197.

3 K. Zheng, G. Li and C. Xu, Appl. Surf. Sci. 2019, 490, 137-144.

4 Y. Jiao, J. Pei, C. Yan, D. Chen, Y. Hu and G. Chen, J. Mater. Chem. A, 2016, 4, 13344-13351.

5 Y. Shang, T. Xie, C. Ma, L. Su, Y. Gai, J. Liu and L. Gong, *Electrochim. Acta* 2018, **286**, 103-113.

6 G. Lee and J. Jang, J. Power Sources 2019, 423, 115-124.

7 Z.-B. Zhai, K.-J. Huang and X. Wu, Nano Energy, 2018, 47, 89-95.