Supplementary Information

Modulation engineering of in-situ cathodic activation of FeP_x based on W-incorporation for hydrogen evolution

Min Yang^a, Yu-Ran Zhu^a, Zhong-Yuan Lin^a, Xin-Tong Yan^a, Bin Dong^{*a}, Ya-Nan Zhou^a,

Qing-Zhong Li^b, Yu-Lu Zhou^a, Jun Nan^a, Yong-Ming Chai^{*a}

^a State Key Laboratory of Heavy Oil Processing, College of Science, China University of

Petroleum (East China), Qingdao 266580, Shandong, China

^b The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China

* Corresponding Authors.

Email: dongbin@upc.edu.cn (B. Dong), ymchai@upc.edu.cn (Y.M. Chai)

Experimental

Materials

Iron foam (thickness: 1.5 mm, bulk density: 0.1 g cm⁻³) was purchased from Heze Tianyu Technology Development Co., Ltd. Iron sulphate heptahydrate (FeSO₄·7H₂O), sodium tungstate dehydrate (Na₂WO₄·2H₂O), boric acid (H₃BO₃), sodium gluconate (C₆H₁₁NaO₇), sodium chloride (NaCl), sodium hydroxide (NaOH), nitric acid (HNO₃), hydrogen peroxide (H₂O₂, 30 wt. %), potassium hydroxide (KOH), and sodium hypophosphite (NaH₂PO₂·H₂O) were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used as received without further purification and all aqueous solutions were prepared with ultrapure water (>18.25 MΩ cm) obtained from Millipore system.

Characterizations

Scanning electron microscopic (SEM) images and corresponding elemental distribution analyses were performed on JEOL JSM-7500F at an acceleration voltage of 5.0 kV equipped with an energy dispersive X-ray spectrometer. High-resolution transmission electron microscopic (HRTEM) images were taken on FEI Tecnai G20. X-ray diffraction patterns (XRD) were obtained from BRUKER D2 PHASER. ICP-AES was performed by inductively coupled plasma spectrometry (Agilent 720) and X-ray photoelectron spectroscopy (XPS) was conducted on Thermo Fisher Scientific Escalab 250Xi using Al Kα radiation

Electrochemical measurements

The electrochemical measurements were conducted with Gamry Reference 600

electrochemical workstation with a three-electrode system in 1.0 M KOH, using carbon rod, SCE as counter electrode and reference electrode, respectively. The working electrode included W-FeP_x/IF, W-FeO_x/IF, FeP_x/IF, WO_x/IF, and Blank IF. The potential conversion from SCE to RHE (reversible hydrogen electrode) was based on the following equation: $E_{RHE} = E_{SCE} + 0.243 + 0.0591 \times \text{pH}$. Linear sweep voltammetry (LSV) curves were performed at a scan rate of 5 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) measurements were conducted at -1.165 V (vs. SCE) with frequency from 10⁵ Hz to 0.01 Hz at an AC voltage of 5 mV. CV tests were performed from -1.08 to -1.18 V (vs. SCE) at scan rates of 40, 60, 80, 100, and 120 mV s⁻¹. Stability tests were measured by chronoamperometry of 100 h and CV of 10000 cycles.

The advantages of iron foam as substrate are described as follows: (i) Compared to other expensive metal substrates like Ni foam, NiFe alloy and Cu foil, iron foam with ultralow cost as the substrate shows great promise in large-scale commercial generation of hydrogen. (ii) Except Fe and W, there are no other kinds of metal compounds in the W-FeO_x sample, which could also exert influence in catalytic performance.

Fig. S1 Photographs of prepared electrocatalysts.

Fig. S2 XPS peaks shift of (a) Fe 2p, (b) W 4f after in-situ cathodic activation.

Sample	Fe	W	Р
W-FeO _x /IF	79.19%	6.03%	0.07%

Table S1 The elemental content (mass ratio) of as-prepared W-FeO_x/IF by ICP-AES.

Fig. S3 XPS spectra comparison of W-FeO_x/IF obtained in different CV cycles. (a) Fe

2p, (b) P 2p, (c) O 1s, (d) W 4f.

Fig. S4 XPS spectra comparisons for monometallic materials before and after in-situ

cathodic activation. (a) Fe 2p for FeO_x/IF, (b) W 4f for WO_x/IF.

Fig. S5 XPS spectra of FeW(OH)_x/IF. (a) survey, (b) Fe 2p, (c) W 4f, (d) O 1s.

Fig. S7 SEM images of (a,b) $FeW(OH)_x/IF$.

Fig. S8 SEM images of W-FeO_x/IF after (a-c) 30 cycles, (d-f) 150 cycles, and (g-i)

500 cycles of CV.

Fig. S9 SEM image and corresponding elemental mapping of W-FeP_x/IF.

Fig. S10 EDX spectra of (a) W-FeP_x/IF and (b) W-FeO_x/IF.

Fig. S11 SEM images of FeO_x/IF (a) before and (b, c) after 50 cycles of CV, and

 WO_x/IF (d) before and (e, f) after 50 cycles of CV.

Fig. S12 (a) In-situ cathodic activation applied by CV scanning at 10 mV s⁻¹ for 50 cycles between 0.4-0.7 V (vs. SCE), (b) LSV polarization curves of W-FeO_x/IF in different CV cycles, and (c) corresponding overpotentials comparison at the same

current density.

Sample	C_{dl}	Cs	ECSA
	mF	mF cm ⁻²	cm ²
W-FeO _x /IF	24.86	0.04	621.5
W-FeP _x /IF	24.63	0.04	615.75
FeO _x /IF	6.8	0.04	170.0
WO _x /IF	4.87	0.04	121.8
Blank IF	2.3	0.04	57.5

 Table S2 The calculated ECSA values of as-prepared samples.

_

The calculation of electrochemically active surface area (ECSA)

The calculation of ECSA and roughness factor (RF) are based on the following equation:

$$ECSA = C_{dl}/C_s \tag{1}$$

In eq (1), C_{dl} is the measured double layer capacitance of samples in 1.0 M KOH (mF) and C_s is the specific capacitance of the catalyst ($C_s = 0.04$ mF cm⁻² in 1.0 M KOH).

Fig. S13 CV scans of double-layer capacitance measurement of (a) W-FeO $_x$ /IF, (b)

W-FeP_x/IF, (c) FeO_x/IF, and (d) WO_x/IF at different scanning rates.

Samples	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega\right)$
W-FeO _x /IF	1.047	5.578
W-FeP _x /IF	1.307	25.08
FeO _x /IF	0.695	10.43
WO _x /IF	0.619	27.71
Blank IF	0.627	34.94

 Table S3 Elemental values of fitted equivalent circuit.

Fig. S14 SEM images of (a, b) W-FeO_x/IF after 100 h of chronoamperometry test

and 10000 cycles of CV test.

Fig. S15 (a) Fe 2p, (b) P 2p, (c) O 1s and (d) W 4f XPS spectra of W-FeO_x/IF before and after stability tests (100 h chronoamperometry at 100 mA cm⁻² and further10000

cycles of CV) for HER in 1 M KOH.

Catalysts	<i>j</i> (mA cm ⁻²)	η (mV)	Stability	Reference
W-FeP _x /IF	100	237.7		
	100	154.0	10000 cycles	This work
W-FeO _x /IF	500	256.3	100 h	
Mo-doped Ni ₂ Fe ₁ oxide	50	>260		J. Mater. Chem. A, 2018, 6, 8430-8440
2-cycle NiFeO _x /CFP	100	>200		Nat. Commun., 2015, 6, 7261
S-NiFe ₂ O ₄ /NF	100	>200		Nano energy, 2017, 40 , 264- 273.
Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂	10	197	1000 cycles	Cham Sci 2018 0 5640 5645
			25 h	<i>Chem. Sci.</i> 2018, 9 , 5040-5045.
FeO _x /FeP hybrid	100	>300	45 h	J. Mater. Chem. A, 2018, 6, 9467-9472
g-FeO _x -Cu ₃ P@Cu	100	176	24 h	J. Mater. Chem. A, 2020, 8, 3351-3356
Ni ₂ P/Fe ₂ P Ti foil	100	210	20 h	Adv. Energy Mater., 2018, 8 , 1800484
FeP nanowire arrays	10	194	8 h	Chem. Commun., 2016, 52 , 2819-2822
FeP NAs/CC	10	218		ACS Catal., 2014, 4, 4065
Ni _{1.5} Fe _{0.5} P/CF	10	282	12 h	ACS Sustainable Chem. Eng., 2018, 6 , 6146-6156
FeP NPs@NPC	10	214		Nanoscale, 2017, 9, 3555-3560
FeP/GA	10	240	5000 cycles	Chem Asian J, 2018, 13 , 679-
			12 h	685
Ni-doped FeP/C-3	100	>165	12 h	Sci. Adv., 2019, 5, eaav6009
MoO ₂ -FeP@C	100	100	5000 cycles	Adv. Mater., 2020, 32 , 2000455
		190	24 h	

Table S4 Comparison of HER performance of W-FeO_x/IF with other recently

reported nonprecious electrocatalysts in 1 M KOH. (*j*: current density; η : overpotential)