Supporting Information for

Robust Ir Doping of Sub-one-nanometer PtMn Nanowires: Highly

Active and Stable Catalysts for Alcohols Electrooxidation

Fei Gao^a, Yangping Zhang^a, FangFang Ren*^b, Tongxin Song^a, Yukou Du*^a

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, PR China

^b College of Chemical and Environmental Engineering, Yancheng Teachers University, No. 2 Hope Avenue South Road, Yancheng 224007, China

* Corresponding author: E-mail: duyk@suda.edu.cn (Y. Du), fangfang7916@163.com (F. Ren).

1. Supporting figures and tables

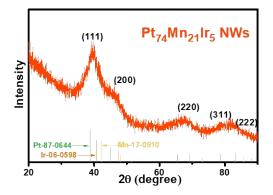


Fig. S1 XRD pattern of Pt₇₄Mn₂₁Ir₅ NWs.

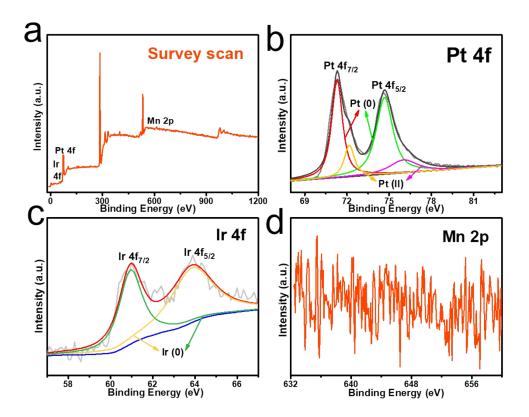


Fig. S2 XPS spectra of (a) survey scan, (b) Pt 4f, (c) Ir 4f, (d) Mn 2p in $Pt_{74}Mn_{21}Ir_5$ NWs.

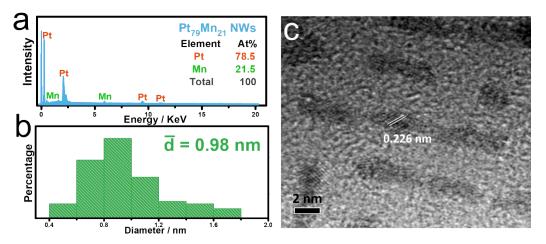


Fig. S3 Representative (a) SEM-EDS spectrum, (b) size distribution of the diameter,(c) HRTEM image as-prepared Pt₇₉Mn₂₁ NWs.

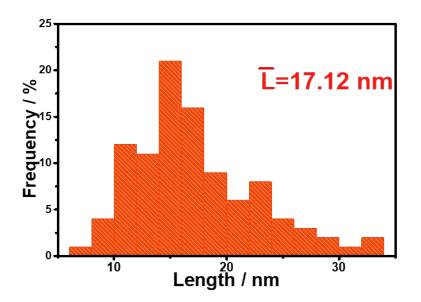


Fig. S4 Size distribution of the length of Pt₇₉Mn₂₁ NWs.

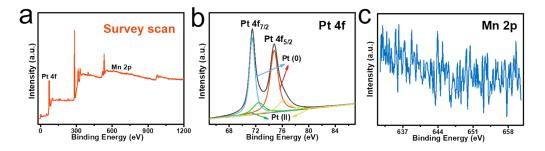
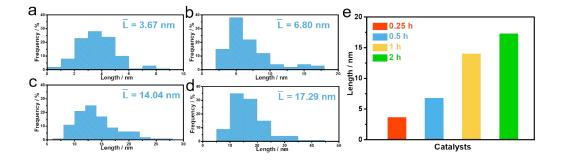



Fig. S5 XPS spectra of (a) survey scan, (b) Pt 4f, (c) Mn 2p in Pt₇₉Mn₂₁ NWs.

Fig. S6 The average length of $Pt_{74}Mn_{21}Ir_5$ NWs intermediates collected after the reaction had prolonged for (a) 0.25, (b) 0.5, (c) 1, and (d) 2 h. (e) the average length variation of $Pt_{74}Mn_{21}Ir_5$ NWs intermediates.

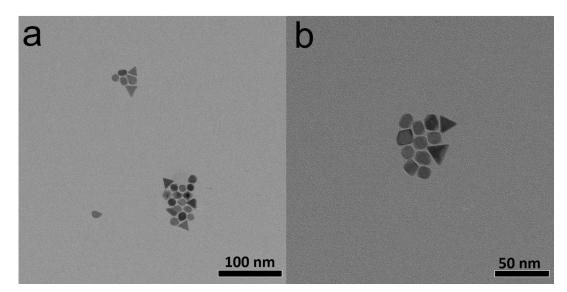


Fig. S7 (a and b) TEM images of the products with the same reaction conditions as that of $Pt_{74}Mn_{21}Ir_5$ NWs without the addition of $Mo(CO)_6$.

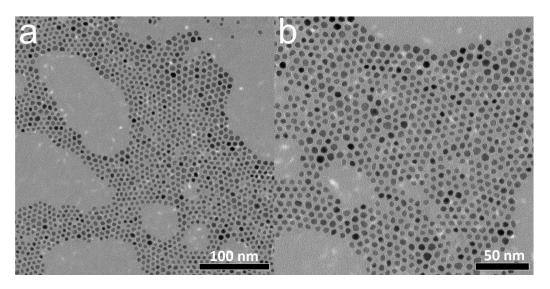


Fig. S8 (a and b) TEM images of the products with the same reaction conditions as that of $Pt_{74}Mn_{21}Ir_5$ NWs without the addition of CTAC.

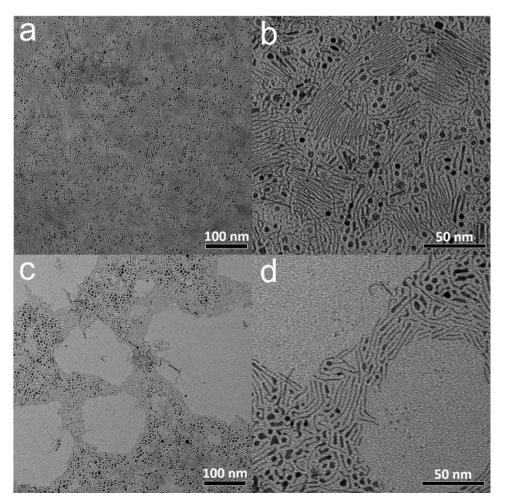


Fig. S9 TEM images of the products with the same reaction conditions as that of (a and b) $Pt_{74}Mn_{21}Ir_5$ NWs and (c and d) $Pt_{79}Mn_{21}$ NWs without the addition of ODE.

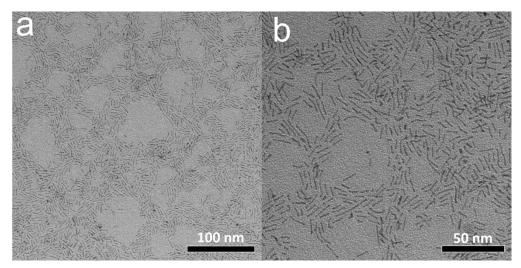
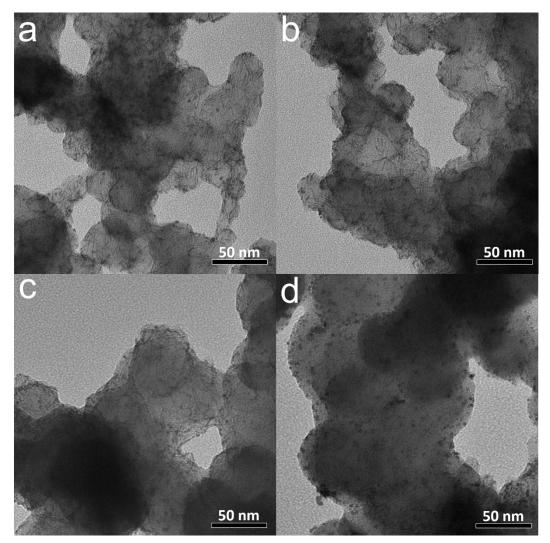



Fig. S10 Representative TEM images of (a and b) Pt NWs.

Fig. S11 TEM images of (a) $Pt_{74}Mn_{21}Ir_5$ NWs, (b) $Pt_{79}Mn_{21}$ NWs, (c) Pt NWs, and (d) Pt/C catalysts before electrochemical tests.

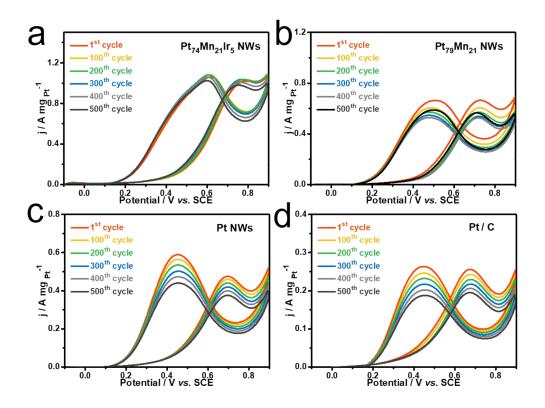
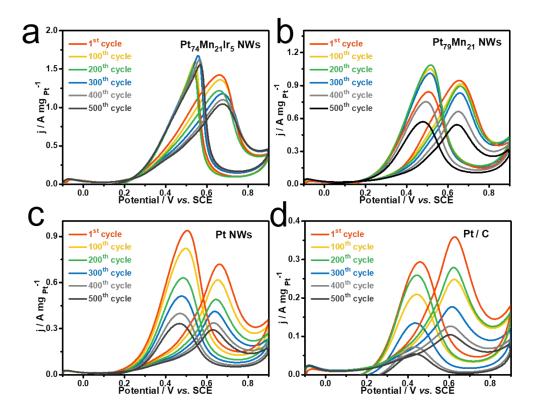



Fig. S12 CV (1st, 100th, 200th, 300th, 400th and 500th) curves of (a) $Pt_{74}Mn_{21}Ir_5$ NWs, (b) $Pt_{79}Mn_{21}$ NWs, (c) Pt NWs, (d) Pt/C catalysts recorded in 0.1 M HClO₄+ 0.5 M ethanol solution.

Fig. S13 CV (1st, 100th, 200th, 300th, 400th and 500th) curves of (a) $Pt_{74}Mn_{21}Ir_5$ NWs, (b) $Pt_{79}Mn_{21}$ NWs, (c) Pt NWs, (d) Pt/C catalysts recorded in 0.1 M HClO₄ + 0.5 M methanol solution.

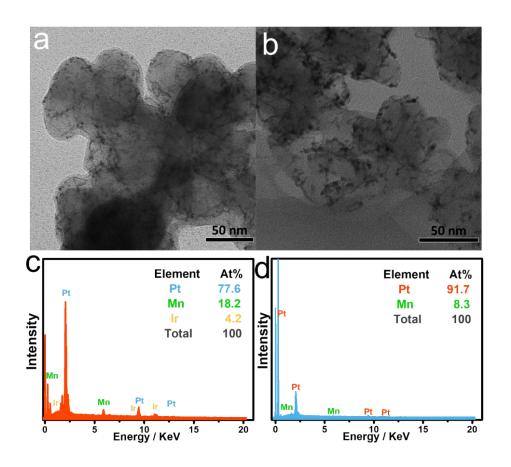


Fig. S14 (a and c) TEM images and (b and d) EDS spectrum of $Pt_{74}Mn_{21}Ir_5$ NWs and $Pt_{79}Mn_{21}$ NWs after stability tests.

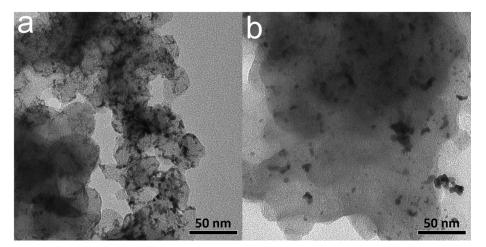


Fig. S15 TEM images of (a) Pt NWs and (b) Pt/C catalysts after stability tests.

Catalysts	Peak currents from CV curves		Electrolyte	Reference
	J _m (A mg ⁻¹)	J_s (mA cm ⁻²)		
Pt ₇₄ Mn ₂₁ Ir ₅	1.02		0.1 M HClO ₄ +	This work
NWs	1.02		0.5 M Ethanol	THIS WORK
Pt-Cu	~ 0.4	2.97	0.5 M H ₂ SO ₄ +	J. Am. Chem. Soc. 2013, 135, 18304-
Nanocone	~ 0.4	2.91	0.1 M Ethanol	18307.
THH PtNi	0.77	1.99		
NFs	0.77	1.99	0.5 M H ₂ SO ₄ +	Nano Lett. 2016 , 16, 2762-2767.
RDH PtNi	0.98	1.79	0.1 M Ethanol	Nano Lett. 2010, 10, 2702-2707.
NFs	0.98	1.79		
PtRhNi/C	0.378		0.5 M HClO ₄ + 1	ChemElectroChem 2015 , 2, 903-908
			M Ethanol	<i>ChemElectroChem</i> 2013 , 2, 905-906
PtPb _{0.27} NWs	~ 1.7	~ 0.9	0.1 M HClO ₄ +	Chem. Mater. 2016 , 28, 4447-4452.
			0.15 M Ethanol	Chem. Muler. 2010, 26, 4447-4452.
PtCu _{2.1} NWs	1.015	2.16	0.1 M HClO ₄ +	Nano Lett. 2016 , 16, 5037–5043
			0.2 M Ethanol	Nuno Leu. 2010, 10, 5057-5045
RuNi@PtRu/	0.9534		0.5 M H ₂ SO ₄ +	Energy Environ. Sci. 2011, 4, 4513-
SWCNT	0.7554		1 M Ethanol	4516.
PtRh	1	2.8	$1 \text{ M H}_2\text{SO}_4 + 1$	ACS Appl. Mater. Interface 2017, 9,
NW/GNS	I	2.0	M Ethanol	3535-3543

Table S1. EOR performances of $Pt_{74}Mn_{21}Ir_5$ NWs and various electrocatalysts from published works.

Catalysts	Peak currents from CV curves		Electrolyte	Reference
	J _m (A mg ⁻¹)	J _s (mA cm ⁻²)		
$Pt_{74}Mn_{21}Ir_5$	1.42		1 M HClO ₄ + 1	This work
NWs	1.42		M methanol	
Pt ₃ Cu Nanoicosahed ra	0.736	2.14	0.1 M HClO ₄ +	ACS Nano, 2015 , 9, 7634-7640
Pt ₃ Cu	0.518	1.63	0.2 M methanol	ACS Nuno, 2013, 9, 7034-7040
Nanoctahedra	0.318	1.03		
PtFe NWs		1.20	0.5 M H ₂ SO ₄ + 1	Cham Fun 1 2012 10 222 220
			M Methanol	Chem. Eur. J. 2013 , 19, 233-239.
PtNi Concave	0.44	1.55	0.1 M HClO ₄ and	Angew. Chem. Int. Ed. 2012, 51,
Nanoctahedra	0.44	1.55	1 M Methanol	12524-12528.
Fe ₂₈ Pt ₃₈ Pd ₃₄	0 4997		0.1M HClO ₄ +	J. Am. Chem. Soc. 2012, 51, 15354-
NWs	0.4887		0.2 M Methanol	15357.
Pt7Ru2Fe		2.27	0.1 M HClO ₄ +	Energy Environ. Sci. 2015, 8, 350-
NWs		2.27	0.5 M Methanol	363.
PtPb CNCs	0.97	2.09	0.1 M HClO ₄	
			+0.5 M Methanol	Chem. Mater. 2017, 29, 4557-4562

Table S2. MOR performances of $Pt_{74}Mn_{21}Ir_5$ NWs and various electrocatalysts from published works.