Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supplementary information

Nanomechanics of the molecular complex between

staphylococcal adhesin SpsD and elastin

Marion Mathelié-Guinlet¹, Constance Chantraine¹, Felipe Viela¹, Giampiero Pietrocola², Pietro Speziale², and Yves F. Dufrêne^{1,3}

¹Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium

²Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy

³Walloon Excellence in Life sciences and Biotechnology (WELBIO), B-1300 Wavre, Belgium

*Corresponding authors:

Yves Dufrêne: yves.dufrene@uclouvain.be

Pietro Speziale: pspeziale@unipv.it

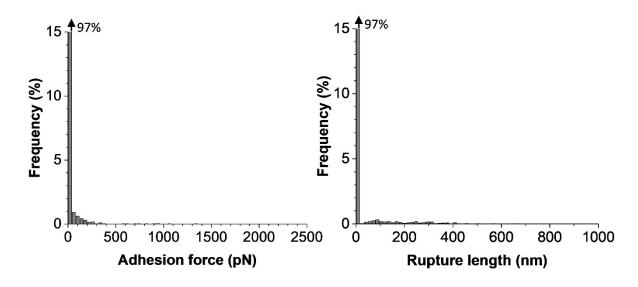
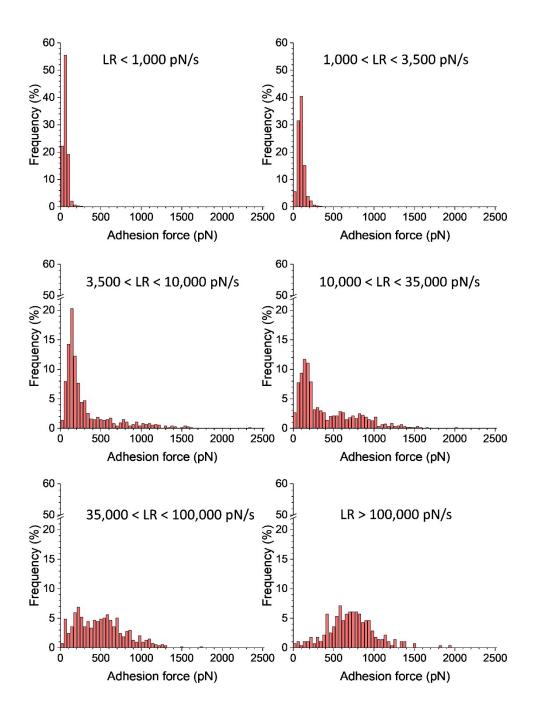



Figure S1. Binding specificity of SpsD and SpsL to elastin. Adhesion force and rupture length histograms obtained for six S. pseudintermedius $\Delta spsD\Delta spsL$ cells interacting with elastin-tips.

Figure S2. Strong interactions are favored at high loading rates. Adhesion forces were measured at various loading rates (*LRs*) between SpsD cells and elastin-tips (Fig. 4A). Small ranges of LRs were binned and the force distribution plotted as histograms (data pooled from 4,424 adhesive events on five cells).