A Green Strategy for Preparation of Honeycomb-like Silicon Composite

with Enhanced Lithium Storage Properties

Runsheng Gao ^{a,b}, Jie Tang ^{a,b,*}, Xiaoliang Yu ^a, Kun Zhang ^a, Kiyoshi Ozawa ^a, Lu-Chang Qin ^c

^a National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^b University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan

^c Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA

Corresponding author: Jie Tang, Tang.Jie@nims.go.jp

Fig. S1. (a) Schematic illustration of the reduction procedure by nascent hydrogen from the reaction of Al with HCl; and (b) optical images of m-Si@GO and m-Si@G.

Fig. S2. SEM (a) and HRTEM images of naked Si.

Fig. S3. HRTEM images of m-Si.

Due to the etching-deposition process, the thickness of the amorphous shell was much thicker than naked Si.

Fig. S4. Nitrogen adsorption/desorption isotherms of RGO.

Fig. S5. Initial charge-discharge profile of m-Si@G.

Fig. S6. Nyquist plots of m-Si@G at initial first cycle and after cycling.

Fig. S7. SEM results of n-Si and m-Si@G composite electrode. (a, c) before and (b, d) after cycles, respectively.