Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalyst with tunable valence state

Siyu wang,^a Yu-quan Zhu,^a Yuhong Zhang,^b Binxia Wang,^a Hong Yan,^a Wendi Liu,^{*a} and Yanjun Lin^{*a}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

^bGansu Provincial Highway Aviation Tourism Investment Group Co., Ltd., Lanzhou 730030, China

* Corresponding authors. Tel: +86-10-64412125; Fax: +86-10-64412125.

E-mail addresses: lwd@mail.buct.edu.cn (W. Liu), linyj@mail.buct.edu.cn (Y. Lin).

Supplementary Figures

Scheme S1 Schematic illustration of the elementary steps in ozone decomposition reaction.

Fig. S1 Optimized geometries of ozone decomposition reaction intermediates for $Mg_3Mn(II)Al-LDH$, $Mg_4Mn(III)Al-LDH$ and $Mg_4Mn(IV)Al-LDH$. The color of each element is labeled.

label	reaction formula	calculation equation
1	$* + O_3 \rightarrow *O_3$	$\Delta G = G_{*_{O_3}} - G_{O_3} - G_*$
2	$*O_3 \rightarrow *O + *O_2$	$\Delta G = G_{*_{\rm O}} + G_{*_{\rm O_2}} - G_{*_{\rm O_3}} - G_{*}$
3	$*O + *O_2 \rightarrow *O + O_2$	$\Delta G = G_* + G_{\rm O_2} - G_{\rm *O_2}$
4	$*O + O_3 \rightarrow *O_2 + O_2$	$\Delta G = G_{*_{O_2}} + G_{O_2} - G_{O_3} - G_{*_O}$
5	$*O_2 \rightarrow *+O_2$	$\Delta G = G_* + G_{\rm O_2} - G_{*{\rm O_2}}$

Table S1 Reaction formulae and calculation equations of the elementary steps in ozone

 decomposition reaction

	$\Delta G / eV$			
reaction formula	Mg ₃ Mn(II)Al ₂ -	Mg ₄ Mn(III)Al-	Mg ₄ Mn(IV)Al-	
	LDH	LDH	LDH	
$* + O_3 \rightarrow *O_3$	-2.128	-2.304	-2.542	
$*O_3 \rightarrow *O + *O_2$	0.626	-0.553	-0.435	
$*O + *O_2 \rightarrow *O + O_2$	0.762	1.377	1.495	
$*O + O_3 \rightarrow *O_2 + O_2$	-1.894	-1.77	-1.885	
$*O_2 \rightarrow *+O_2$	0.762	1.377	1.495	

Fig. S2 XRD pattern of Mg_2Al -LDH and JCPDS no.190748.

Fig. S3 SEM images of a) $Mg_2Al-LDH$, b) $Mg_1Mn_1Al-LDH$ and c) $Mg_{0.6}Mn_{1.4}Al-LDH$.

Fig. S4 Mn 2p XPS spectra of (A) Mg_{1.4}Mn_{0.6}Al-LDH, (B) Mg₁Mn₁Al-LDH, (C)

 $Mg_{0.6}Mn_{1.4}Al\text{-}LDH.$

Fig. S5 Mn $2p_{3/2}$ XPS spectra of α -MnO₂.

Catalyst	Mn 2p _{3/2}			AOS of
	M ²⁺ (%)	${ m M}^{3+}$ (%)	M ⁴⁺ (%)	Mn
Mg _{1.4} Mn _{0.6} Al-LDH	82.65	8.59	8.77	2.3
Mg ₁ Mn ₁ Al-LDH	46.39	34.66	18.95	2.7
Mg _{0.6} Mn _{1.4} Al-LDH	26.46	36.75	36.79	3.1
α -MnO ₂	14.23	26.08	59.70	3.4

Table S3 XPS results of surface Mn elements

Table S4 Chemical compositions and manganese content

Sample	Chemical compositions	Mn% (w.t.%)
Mg _{1.4} Mn _{0.6} Al-LDH	$Mg_{0.43}Mn_{0.22}Al_{0.35}(OH)_2Cl_{0.41}$	15.01
Mg ₁ Mn ₁ Al-LDH	$Mg_{0.28}Mn_{0.38}Al_{0.34}(OH)_2Cl_{0.61}$	22.57
Mg _{0.6} Mn _{1.4} Al-LDH	$Mg_{0.15}Mn_{0.52}Al_{0.33}(OH)_2Cl_{0.90}$	26.69
Mg ₂ Al-LDH	$Mg_{0.66}Al_{0.34}(OH)_2Cl_{0.34}$	_
α -MnO ₂	_	63.19

Fig. S6 Mn 2p XPS spectra of $Mg_{1.4}Mn_{0.6}Al$ -LDH before and after exposed to ozone.