Supporting information

Enhancing photoelectrochemical performance of Bi₂MoO₆ photoanode

by ferroelectric polarization regulation

Zhongshuai Xie,^a Zongyang Cui,^a Jiafeng Shi,^a Cheng Lin,^a Kan Zhang,^a Guoliang Yuan^{*,a} and Jun-Ming

Liu^b

^aSchool of Materials Science and Engineering, Nanjing University of Science and Technology,

Nanjing 210094, P. R. China

^bNational Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced

Microstructures, Nanjing University, Nanjing 210093, P. R. China

* Corresponding author: G. L. Yuan; E-mail: yuanguoliang@njust.edu.cn

Table S1. A survey of literature regarding photoelectrochemical performance of Bi_2MoO_6 photoelectrodes.

Morphology	Light source	Electrolyte	Photocurrent density	Reference
Film	300 W Xe lamp (150	0.1 M KCl	$< 10 \ \mu A/cm^2 @ 0.8$	1
	mW/cm ⁻²) γ >420 nm		V _{Ag/AgCl}	
Nanowall	300 W Xe lamp (50	0.5 M Na ₂ SO ₄	75 μ A/cm ² @ 0.9 V _{Ag/AgCl}	2
	mW/cm ⁻²)			
Nanorod array	300 W Xe lamp $\gamma > 420$	0.1 M Na ₂ SO ₄	$12 \ \mu A/cm^2 @ 0.8 \ V_{SCE}$	3
	nm			
Nanosheet	AM 1.5G(100 mW/cm ⁻²)	0.5 M Na ₂ SO ₄	<100 µA/cm ² @ 1.23	4
		(pH 6.5)	V _{RHE}	
Nanosheet	AM 1.5G(100 mW/cm ⁻²)	0.1 M Na ₂ SO ₄	120 μA/cm ² @ 1 V _{RHE}	5
		(pH 6.8)		
Nanopillars	AM 1.5G(100 mW/cm ⁻²)	0.5 M Na ₂ SO ₄	250 μA/cm ² @ 1.23 V _{RHE}	This work
		(pH 6.8)		

Fig. S1 Cross-sectional TEM images of Bi₂MoO₆ nanopillars.

Fig. S2. AFM surface topographies of (a) ITO film, (b) the flat film and (c) nanopillars of Bi_2MoO_6 grown on the ITO-coated glass substrate, respectively. (d) SEM image of the flat Bi_2MoO_6 film.

Fig. S3. The XPS survey spectrum of the Bi₂MoO₆ nanopillars.

Fig. S4. J-V curves of the flat Bi₂MoO₆ film and the Bi₂MoO₆ nanopillars.

Fig. S5. Schematic diagrams about the polarization poling process of Bi₂MoO₆ nanopillars with ionic

liquid as top electrode.

Fig. S6. Out-of-plane PFM image of the Bi₂MoO₆ nanopillars polarized by the conductive tip with -5 V and 5V, respectively.

Fig. S7. Dependence of H_2 amount on lighting time of the as-grown sample and that with polarization toward ITO recorded at 1.1 V vs. RHE in the 0.5 M Na₂SO₄ and 0.2 M Na₂SO₃ aqueous solution.

Fig. S8. Photocurrent density of Bi_2MoO_6 photoanodes with three different polarization statuses at 1.23 V vs. RHE under AM 1.5 G solar light illumination (100 mW cm⁻²).

Fig. S9. (a) Comparison of *J-V* curves of Bi₂MoO₆ photoanodes measured for water oxidation (WO) in 0.5 M Na₂SO₄ aqueous solution and for sulfite oxidation (SO) in the 0.5 M Na₂SO₄ and 0.2 M Na₂SO₃ aqueous solution. (b) Charge transfer efficiency (η_{trans}) of the as-grown Bi₂MoO₆ nanopillars without macroscopic polarization and that with the macroscopic polarization toward ITO electrode, where *J*_{Ph} is the photocurrent density measured in the Na₂SO₄ aqueous solution, *J*_{HS} is the photocurrent density measured in the 0.5 M Na₂SO₄ and 0.2 M Na₂SO₃ aqueous solution, and η_{trans} is *J*_{Ph}/*J*_{HS}.

Fig. S10. (a) Stability test of three-type Bi₂MoO₆ photoanodes (as-grown, P toward ITO, and P against ITO) at 1.23 V vs. RHE, and (b) their photoelectrochemical properties before and after above stability test.

References

- 1. X. Zhao, T. Xu, W. Yao and Y. Zhu, Thin Solid Films, 2009, 517, 5813-5818.
- 2. M. Wu, Y. Wang, Y. Xu, J. Ming, M. Zhou, R. Xu, Q. Fu and Y. Lei, *ACS Appl. Mater. Interfaces*, 2017, **9**, 23647-23653.
- 3. Y. Ma, Y. Jia, L. Wang, M. Yang, Y. Bi and Y. Qi, *Phys. Chem. Chem. Phys.*, 2016, 18, 5091-5094.
- 4. L. Wang, R. Wang, Y. Zhou, Q. Shen, J. Ye, C. Wu and Z. Zou, Catal. Today, 2019, 335, 262-268.
- 5. J. Zhang, T. Wang, X. Chang, A. Li and J. Gong, Chem. Sci., 2016, 7, 6381-6386.