Supporting Information:

Electroactivation-induced IrNi Nanoparticles at Different pH Conditions for Neutral Water Oxidation

Woong Hee Lee ^{a†}, Jaekyung Yi ^{a, b†}, Hong Nhan Nong ^c, Peter Strasser ^c, Keun Hwa Chae ^d, Byoung Koun Min ^{a, e}, Yun Jeong Hwang ^{a, b, f}*, and Hyung-Suk Oh ^{a, b}*

- ^a Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- ^b Division of Energy and Environmental Technology, KIST school, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- ^c The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin 10623, Germany
- ^d Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- ^e Green School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- ^f Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea

- [†] The authors have contributed equally to this work.
- *Corresponding author Email: yjhwang@kist.re.kr, hyng-suk.oh@kist.re.kr Tel: +82 (0)2 952 5292

Figure S1. HR-TEM images of the pristine IrNi nanoparticles supported on carbon black (IrNi/C)

Figure S2. Identical location high angle annular dark-field STEM (IL-HADDF-STEM) images of IrNi/C (a) before and (b) after electrochemical activation in the acidic electrolyte conditions.

Figure S3. Identical location high angle annular dark-field STEM (IL-HADDF-STEM) images of IrNi/C (a) before and (b) after electrochemical activation in the neutral electrolyte conditions.

Figure S4. Identical location high angle annular dark-field STEM (IL-HADDF-STEM) images of IrNi/C (a) before and (b) after electrochemical activation in the alkaline electrolyte conditions.

Figure S5. IL-TEM images of the IrNi/C (a) before and (b) after activation in the alkaline electrolyte conditions.

Figure S6. Constant current stability test of $IrNiO_x$ based electrocatalysts for OER with different pH electrolyte activation conditions. Measurement condition: 25 °C, 10 mA cm⁻², CO₂-saturated 0.5 M KHCO₃, 1600 rpm. Test time: 10 h. Ir loading: 20.5 µg cm⁻².

Figure S7. XPS spectra for Ni 2p of $IrNiO_x/C-A1$ (a) after electrochemical activation in alkaline condition and (b) after OER test in CO₂ saturated 0.5 M KHCO₃.

Figure S8. *Ex-situ* X-ray absorption spectroscopy (XAS) results of IrNiO_x/C-A, IrNiO_x/C-N, and IrNiO_x/C-Al. NEXAFS region of (a) Ir L3-edge and (b) Ni K-edge.

Figure S9. XANES Peak area fitting results of (a) $IrNiO_x/C-A$ and (b) $IrNiO_x/C-Al$.

Catalyst	Catalyst loading (mg/cm ²)	Tafel slope (mV/dec)	Potential (mV) @ 10mA/cm ²	Reference
IrNiO _x /C-Al	0.02	150	384	This work
Ni _{0.1} Co _{0.9} P	0.58	133	~530	Yu et al ¹
Co@Co-Bi/Ti	0.2	-	470	Wang et al ²
Iridium incorporated Co(OH) ₂	0.566	117.5	373	Song et al ³
Dendritic IrTe NTs	0.0245	77.9	570	Lin et al ⁴
Ir ₇₀ Ni ₁₅ Co ₁₅	1.08	63.5	290	Tan et al ⁵
IrRu@Te	0.15	-	309	Liu et al ⁶
Li-IrSe ₂	0.25	-	315	Zeng et al ⁷

Table S1. Comparisons of OER electrocatalytic activity in neutral media

Reference

- 1. R. Wu, B. Xiao, Q. Gao, Y. R. Zheng, X. S. Zheng, J. F. Zhu, M. R. Gao and S. H. Yu, *Angewandte Chemie*, 2018, **130**, 15671-15675.
- 2. C. Xie, Y. Wang, D. Yan, L. Tao and S. Wang, *Nanoscale*, 2017, **9**, 16059-16065.
- 3. Y. Zhang, C. Wu, H. Jiang, Y. Lin, H. Liu, Q. He, S. Chen, T. Duan and L. Song, *Advanced Materials*, 2018, **30**, 1707522.
- 4. Q. Shi, C. Zhu, D. Du, J. Wang, H. Xia, M. H. Engelhard, S. Feng and Y. Lin, *Journal of Materials Chemistry A*, 2018, **6**, 8855-8859.
- 5. Y. Zhao, M. Luo, S. Chu, M. Peng, B. Liu, Q. Wu, P. Liu, F. M. F. de Groot and Y. Tan, *Nano Energy*, 2019, **59**, 146-153.
- J. Xu, Z. Lian, B. Wei, Y. Li, O. Bondarchuk, N. Zhang, Z. Yu, A. Araujo, I. Amorim and Z. Wang, *ACS Catalysis*, 2020, **10**, 3571-3579.
- 7. T. Zheng, C. Shang, Z. He, X. Wang, C. Cao, H. Li, R. Si, B. Pan, S. Zhou and J. Zeng, *Angewandte Chemie*, 2019, **131**, 14906-14911.