Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin

2D MOF nanosheets

Yuehong Wen,^a Qiang Liu,^{a,b} Shaodong Su,^a Yuying Yang,^{a,b} Xiaofang Li,^a Qi-Long Zhu,*a and Xintao Wu*a

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China ^b University of Chinese Academy of Sciences, Beijing 100049, China

^{*}Corresponding Authors. E-mail: qlzhu@fjirsm.ac.cn; wxt@fjirsm.ac.cn; wxt@fjirsm.ac.cn; wxt@fjirsm.ac.cn; <a href=

Materials. All chemicals such as Zn(NO₃)₂·6H₂O, 1,4-benzendicarboxylic acid (H₂bdc), N,N-dimethylformamide, ethanol, etc. were purchased commercially and used without further purification. Ligand bdc was in-situ prepared from H₂bdc and NaOH. Ligand 1,2-bis(4'-pyridylmethylamino)-ethane (hsb-2) was synthesized employing previous method.^[1]

Synthesis of MOF HSB-W1. A solution of hsb-2 (72 mg, 0.3 mmol) and Zn(NO₃)₂·6H₂O (90 mg, 0.3 mmol) in H₂O/EtOH (6 mL/6 mL) was slowly layered over a solution of bdc (0.3 mmol) in H₂O/DMF (8 mL/4 mL). Colorless crystals HSB-W1 were yielded after one month.^[2]

Synthesis of MOF HSB-W5. A solution of hsb-2 (12 mg, 0.05 mmol) and $Zn(NO_3)_2 \cdot 6H_2O$ (15 mg, 0.05 mmol) in H_2O/DMF (6 mL/3 mL) was quickly added a solution of bdc (0.05 mmol) in H_2O/DMF (8 mL/4 mL) under vigorously stirring. Then, the reaction mixture was filtered immediately and the filtrate was evaporated for 6 days to give the colorless and leaf-like single crystals. Elemental analysis calcd (%) for $ZnC_{22}H_{30}N_4O_8$ [$Zn(hsb-2)(bdc)\cdot 4H_2O$]: C 48.58, H 5.56, N 10.30; found: C 49.16, H 5.29, N 10.41. IR (KBr): v = 3398(s), 3276(s), 2948(w), 1944(vw), 1616(m), 1593(s), 1563(s), 1502(m), 1456(w), 1426(m), 1395(s), 1381(s), 1362(s), 1311(vw), 1290(vw), 1254(vw), 1225(m), 1140(w), 1097(vw), 1065(w), 1016(m), 980(w), 965(vw), 924(m), 884(w), 843(m), 818(m), 801(m), 745(m), 628(w), 617(w0, 563(w), 540(w), 505(w).

Synthesis of HSB-W5-Ns. Bulk MOF HSB-W1 (20 mg) was added in 15 mL of water, followed by ultrasonication for 90 min. Then, the milky colloidal suspension was centrifugated at 10,000 rpm for 4 min to remove the water. The residual solid was next

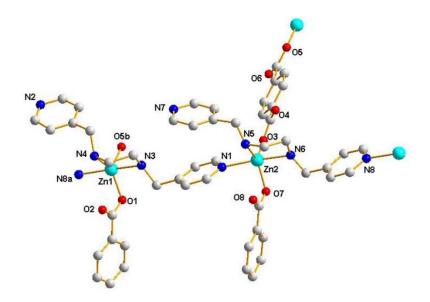
washed with DMF and EtOH, respectively. After drying, 4.0 mg of the nanosheet sample, named as HSB-W5-Ns, was obtained.

Characterization studies. The structural determination of single crystal was performed on Rigaku SCXmini diffractometer with graphite-monochromated Mo-Ka $(\lambda = 0.71073 \text{ Å})$ radiation at room temperature. The structure was solved by the SHELXL-2017 and OLEX2 program package.^[3] All of the non-hydrogen atoms were refined anisotropically, and the hydrogen atoms attached to carbon were located at their ideal positions. Elemental analyses were performed by Vario MICRO CHNOS Elemental Analyzer. The Fourier-transform infrared spectra with KBr pellet were performed in the range of 4000-400 cm⁻¹ on a Perkin-Elmer Spectrum One FT-IR Spectrometer. PXRD data were collected on a DMAX-2500 diffractometer with Cu-Ka. Thermal analyses were performed on a NETZSCH STA 449C apparatus from 20 to 1000 °C with a heating rate of 10 °C min⁻¹ under nitrogen flow. SEM characterization was conducted on a JEOL JSM-7800F instrument. TEM images of the samples were gained using FEI Tecnai G² F30 instrument equipped with energy-dispersive X-ray (EDX) detector. AFM images of the samples were obtained in a Bruker Dimension ICON atomic force microscope. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher) using an Al Kα source (15 kV, 10 mA). The fluorescent emission and excitation spectra were recorded on a FLS920 fluorescence spectrophotometer.

[CCDC 1990806 contains the supplementary crystallographic data for this paper.

These data can be obtained free of charge from the Cambridge Crystallographic Data

Centre via www.ccdc.cam.ac.uk/data_request/cif.]


Table S1 Crystallographic data and refinement details for HSB-W5.

Empirical formula $C_{22}H_{30}N_4O_8Zn$ M 543.87 Crystal system triclinic Space group P -1 a (Å) 10.854(6) b (Å) 14.735(6) c (Å) 17.464(7) a (°) 67.045(18) β (°) 79.81(2) γ (°) 77.424(19) V /Å ³ 2497.0(19) Z 4 D_c /g cm ⁻³ 1.447 μ /mm ⁻¹ 1.036 $2\theta_{\text{range}}$ (°) 6.07 to 49.998 $h, k, l, ranges$ -12 to 12, -17 to 17, -20 to 20 $F(000)$ 1136.0 $R_{I,}{}^a w R_2{}^b [I > 2\sigma(I)]$ 0.0799, 0.1636 GOF on F^2 1.141 $a R = \Sigma(Fo - Fc) \Sigma Fo $. ${}^b R w = \{\Sigma w [(Fo^2 - Fc^2)^2] / \Sigma w [(Fo^2)^2]\}^{1/2}$.			
Crystal system triclinic Space group $P-1$ a (Å) $10.854(6)$ b (Å) $14.735(6)$ c (Å) $17.464(7)$ α (°) $67.045(18)$ β (°) $79.81(2)$ γ (°) $77.424(19)$ $V/Å^3$ $2497.0(19)$ Z 4 Dc/g cm ⁻³ 1.447 μ /mm ⁻¹ 1.036 $2\theta_{\rm range}$ (°) 6.07 to 49.998 h , k , l , $ranges$ -12 to 12 , -17 to 17 , -20 to 20 $F(000)$ 1136.0 $R_{l,a} w R_2^b$ [$I > 2\sigma(I)$] 0.0799 , 0.1636 GOF on F^2 1.141	Empirical formula	$C_{22}H_{30}N_4O_8Zn$	
Space group $P-1$ a (Å) $10.854(6)$ b (Å) $14.735(6)$ c (Å) $17.464(7)$ a (°) $67.045(18)$ β (°) $79.81(2)$ γ (°) $77.424(19)$ $V/Å^3$ $2497.0(19)$ Z 4 D_c/g cm ⁻³ 1.447 μ/mm^{-1} 1.036 $2\theta_{\text{range}}$ (°) 6.07 to 49.998 h , k , l , $ranges$ -12 to 12 , -17 to 17 , -20 to 20 $F(000)$ 1136.0 R_{l} , ${}^a w R_2$ b $[I > 2\sigma(I)] 0.0799, 0.1636 GOF on F^2 1.141 $	M	543.87	
a (Å) $10.854(6)$ b (Å) $14.735(6)$ c (Å) $17.464(7)$ a (°) $67.045(18)$ β (°) $79.81(2)$ γ (°) γ 7.424(19) $V/Å^3$ $2497.0(19)$ Z 4 D_c/g cm ⁻³ 1.447 μ/mm^{-1} 1.036 $2\theta_{\rm range}$ (°) 6.07 to 49.998 h , k , l , $ranges$ -12 to 12 , -17 to 17 , -20 to 20 $F(000)$ 1136.0 R_{I} , ${}^a w R_2^b$ [$I > 2\sigma(I)$] 0.0799 , 0.1636 GOF on F^2 1.141	Crystal system	triclinic	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Space group	P-1	
$\begin{array}{ccccc} c \ (\mbox{Å}) & 17.464(7) \\ \alpha \ (^{\circ}) & 67.045(18) \\ \beta \ (^{\circ}) & 79.81(2) \\ \gamma \ (^{\circ}) & 77.424(19) \\ V/\mbox{Å}^3 & 2497.0(19) \\ Z & 4 \\ D_c/g \ cm^{-3} & 1.447 \\ \mu/mm^{-1} & 1.036 \\ 2\theta_{\ range} \ (^{\circ}) & 6.07 \ to \ 49.998 \\ h, k, l, ranges & -12 \ to \ 12, \\ & -17 \ to \ 17, \\ & -20 \ to \ 20 \\ \hline F(000) & 1136.0 \\ R_{I}, {}^{a}wR_{2}{}^{b} \ [I>2\sigma(I)] & 0.0799, 0.1636 \\ \text{GOF on } F^2 & 1.141 \\ \end{array}$	a (Å)	10.854(6)	
α (°) $67.045(18)$ β (°) $79.81(2)$ γ (°) $77.424(19)$ $V/\text{Å}^3$ $2497.0(19)$ Z 4 $D_{\text{c}}/\text{g cm}^{-3}$ 1.447 μ/mm^{-1} 1.036 $2\theta_{\text{range}}$ (°) $6.07 \text{ to } 49.998$ $h, k, l, ranges$ $-12 \text{ to } 12,$ $-17 \text{ to } 17,$ $-20 \text{ to } 20$ $F(000)$ 1136.0 R_{I} , ${}^{a}wR_{2}$ b $[I>2\sigma(I)]$ $0.0799, 0.1636$ GOF on F^2 1.141	b (Å)	14.735(6)	
$eta(^{\circ})$ 79.81(2) $\gamma(^{\circ})$ 77.424(19) $V/\text{Å}^3$ 2497.0(19) Z 4 $D_{\text{c}}/\text{g cm}^{-3}$ 1.447 μ/mm^{-1} 1.036 $2\theta_{\text{range}}(^{\circ})$ 6.07 to 49.998 h, k, l, ranges -12 to 12, -17 to 17, -20 to 20 F(000) 1136.0 $R_{l,a} w R_{2}^{b} [I > 2\sigma(l)]$ 0.0799, 0.1636 GOF on F^2 1.141	c (Å)	17.464(7)	
γ (°) 77.424(19) $V/\text{Å}^3$ 2497.0(19) Z 4 $D_c/g \text{ cm}^{-3}$ 1.447 μ/mm^{-1} 1.036 $2\theta_{\text{range}}$ (°) 6.07 to 49.998 h, k, l, ranges -12 to 12, -17 to 17, -20 to 20 F(000) 1136.0 $R_{l,a} w R_{2}^{b} [I > 2\sigma(l)]$ 0.0799, 0.1636 GOF on F^2 1.141	α (°)	67.045(18)	
$V/\text{Å}^3$ 2497.0(19) Z 4 $D_c/g \text{ cm}^{-3}$ 1.447 μ/mm^{-1} 1.036 $2\theta_{\text{range}}$ (°) 6.07 to 49.998 h, k, l, ranges -12 to 12, -17 to 17, -20 to 20 F(000) 1136.0 $R_{l,a} w R_{2}^{b} [I > 2\sigma(l)]$ 0.0799, 0.1636 GOF on F^2 1.141	β(°)	79.81(2)	
Z4 $D_c/g \text{ cm}^{-3}$ 1.447 μ/mm^{-1} 1.036 $2\theta_{\text{range}}$ (°)6.07 to 49.998 $h, k, l, ranges$ -12 to 12,-17 to 17,-20 to 20 $F(000)$ 1136.0 $R_{I,a} w R_2^b [I > 2\sigma(I)]$ 0.0799, 0.1636GOF on F^2 1.141	γ(°)	77.424(19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V/Å ³	2497.0(19)	
μ/mm^{-1} 1.036 $2\theta_{\text{range}}$ (°) 6.07 to 49.998 h, k, l, ranges -12 to 12, -17 to 17, -20 to 20 F(000) 1136.0 R_{l} , ${}^{a}wR_{2}$ b $[I>2\sigma(I)]$ 0.0799, 0.1636 GOF on F^{2} 1.141	Z	4	
$2\theta_{\text{range}}$ (°) 6.07 to 49.998 h, k, l, ranges -12 to 12, -17 to 17, -20 to 20 F(000) 1136.0 R_{l} , ${}^{a}wR_{2}$, ${}^{b}[I>2\sigma(I)]$ 0.0799, 0.1636 GOF on F^{2} 1.141	$D_{\rm c}/{\rm g}~{\rm cm}^{-3}$	1.447	
$h, k, l, ranges$ $-12 \text{ to } 12,$ $-17 \text{ to } 17,$ $-20 \text{ to } 20$ $F(000)$ $R_{1,a} w R_{2}^{b} [I > 2\sigma(I)]$ $0.0799, 0.1636$ GOF on F^{2} 1.141	μ/mm^{-1}	1.036	
$ \begin{array}{ccc} & -17 \text{ to } 17, \\ & -20 \text{ to } 20 \end{array} $ $ F(000) & 1136.0 \\ R_{1,a} w R_{2}^{b} [I > 2\sigma(I)] & 0.0799, 0.1636 \\ GOF \text{ on } F^{2} & 1.141 $	$2\theta_{\text{range}}$ (°)	6.07 to 49.998	
$ \begin{array}{ccc} -20 \text{ to } 20 \\ F(000) & 1136.0 \\ R_{1,a} w R_{2}^{b} [I > 2\sigma(I)] & 0.0799, 0.1636 \\ GOF \text{ on } F^{2} & 1.141 \end{array} $	h, k, l, ranges	-12 to 12,	
F(000) 1136.0 $R_{1,a} w R_{2}^{b} [I > 2\sigma(I)]$ 0.0799, 0.1636 GOF on F^{2} 1.141		-17 to 17,	
$R_{1}^{a} w R_{2}^{b} [I > 2\sigma(I)]$ 0.0799, 0.1636 GOF on F^{2} 1.141		-20 to 20	
GOF on F^2 1.141	F(000)	1136.0	
	R_{I} , ${}^{a}wR_{2}{}^{b}[I>2\sigma(I)]$	0.0799, 0.1636	
$^{a}R = \Sigma(Fo - Fc)/\Sigma Fo $. $^{b}Rw = {\Sigma w[(Fo^{2} - Fc^{2})^{2}]/\Sigma w[(Fo^{2})^{2}]}^{1/2}$.	GOF on F^2	1.141	
	$ a R = \Sigma(Fo - Fc)/\Sigma Fo . bRw = \{\Sigma w[(Fo^2 - Fc^2)^2]/\Sigma w[(Fo^2)^2]\}^{1/2}. $		

Table S2 Selected bond lengths (Å) and angles (°) of HSB-W5.

Zn1-N3	2.220(4)
Zn1-N4	2.115(4)
Zn1-N8 ^a	2.224(4)
Zn1-O1	2.043(4)
Zn1-O5 ^b	1.993(4)
Zn2-N1	2.222(4)
Zn2-N5	2.137(5)
Zn2-N6	2.215(5)
Zn2-O3	2.007(4)
Zn2-O7	2.068(4)
N8-Zn1 ^c	2.224(4)
N3-Zn1-N8 ^a	172.93(18)
N4-Zn1-N3	81.53(17)
N4- Zn1-N8 ^a	92.73(17)
O1- Zn1-N3	93.89(16)
O1-Zn1-N4	139.76(17)
O1-Zn1-N8 ^a	87.82(16)
O5b-Zn1-N3	96.15(17)
O5 ^b Zn1-N4	117.23(17)
O5 ^b Zn1-N8 ^a	90.14(17)
O5 ^b Zn1-O1	103.00(17)
N5- Zn2-N1	91.98(19)
N5- Zn2-N6	81.2(2)
N6- Zn2-N1	170.0(2)
O3- Zn2-N1	91.92(16)
O3- Zn2-N5	118.9(2)
O3- Zn2-N6	97.8(2)
O3- Zn2-O7	99.61(16)
O7- Zn2-N1	86.94(16)
O7- Zn2-N5	141.4(2)
O7- Zn2-N6	93.75(18)

Symmetry codes: (a) 1+x, +y, -1+z; (b) -x, 1-y, -z; (c) -1+x, +y, 1+z.

Fig. S1 View of the coordination environment of Zn(II) ion in HSB-W5 (hydrogen atoms and free water molecules have been omitted for clarity).

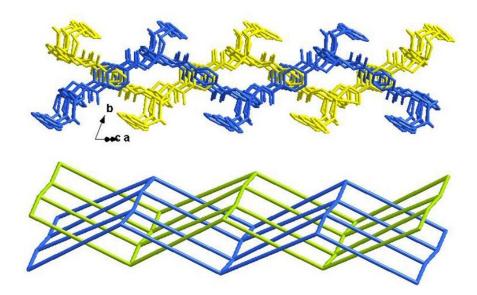
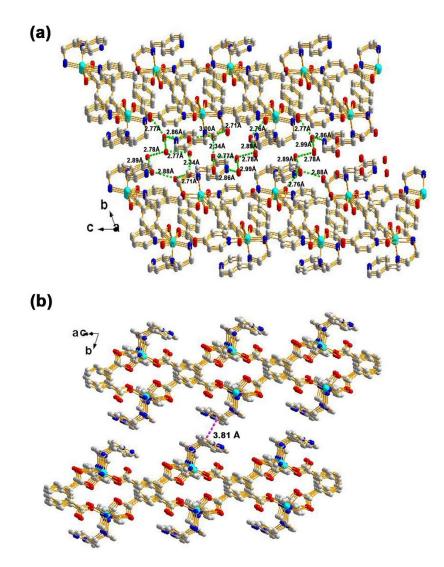



Fig. S2 A single interpenetrated 2D layer of HSB-W5.

Fig. S3 The hydrogen bonding (a) and $\pi \cdots \pi$ stacking (b) interactions between adjacent layers in HSB-W5.

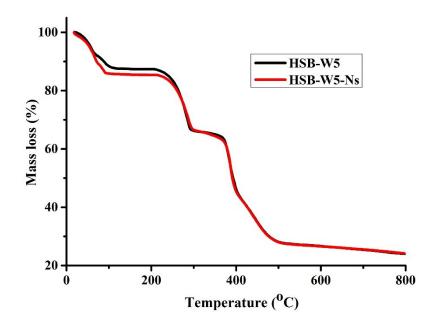
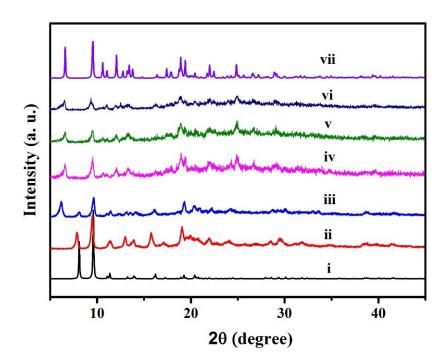
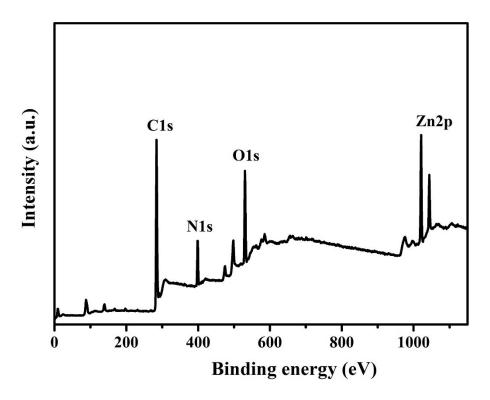
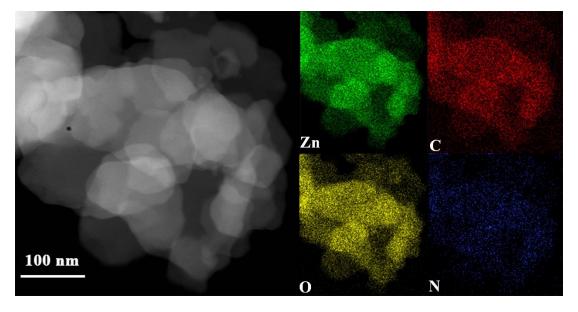
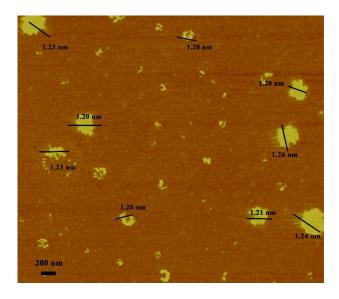
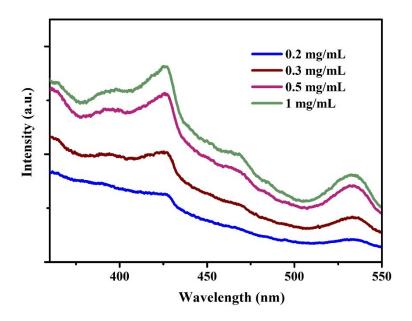
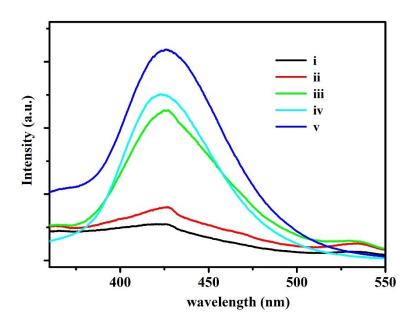



Fig. S4 TGA plots of HSB-W5 and HSB-W5-Ns.

Fig. S5 PXRD patterns of the samples treated with different ultrasonic time in water. i) HSB-W1 (simulated); ii) pristine HSB-W1; iii) two min; iv) five min; v) ten min; vi) ninety min; vii) simulated HSB-W5.


Fig. S6 XPS spectrum of HSB-W5-Ns.


Fig. S7 TEM image and the corresponding EDX elemental mapping images of HSB-W5-Ns for Zn, C, O, and N.

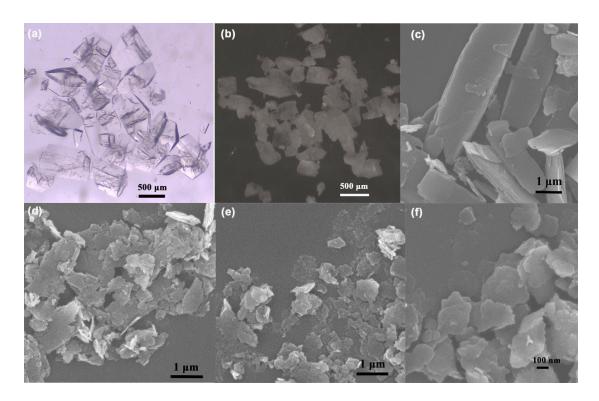

Fig. S8 AFM image of HSB-W5-Ns indicating the average thickness of ∼1.2 nm.

Fig. S9 Relative emission spectra of the HSB-W5-Ns aqueous suspensions with different concentrations.

Fig. S10 Comparison of the fluorescent emissions: i) HSB-W5-Ns dispersed in water (0.2 mg·mL⁻¹); ii, iii) ultrasonic irradiation of HSB-W1 in water for 10 and 90 min, respectively; iv) clear reaction solution by remove of the formed HSB-W5-Ns; v) the bdc-Zn(II) mixture obtained by adding a small amount of Zn(NO₃)₂.4H₂O to the solution of bdc in water.

Fig. S11 Photographic and SEM images of the samples: (a, b) pristine HSB-W1; (c) upon ultrasonic irradiation for 10 min; (d) upon ultrasonic irradiation for 30 min; (e) upon ultrasonic irradiation for 60 min; (f) upon ultrasonic irradiation for 90 min.

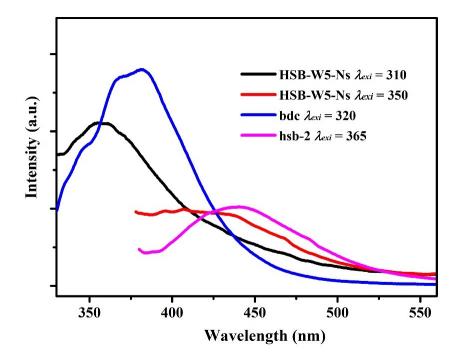


Fig. S12 Fluorescent spectra of solid HSB-W5-Ns and free ligands.

References:

- [1] Y.-H. Wen, T.-L. Sheng, S.-M. Hu, Y.-L. Wang, C.-H. Tan, X. Ma, Z.-Z. Xue, Y. Wang and X.-T. Wu, *CrystEngComm* 2013, **15**, 2714.
- [2] Y.-H Wen, T.-L Sheng, X.-Q. Zhu, C. Zhuo, S.-D. Su, H.-R. Li, S.-M. Hu, Q.-L. Zhu and X.-T. Wu, *Adv. Mater.* 2017, **29**, 1700778.
- [3] a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst. 2009, 42, 339; b) L. J. Bourhis, O. V. Dolomanov, R. J.Gildea, J. A. K. Howard and H. Puschmann, Acta Cryst. A 2015, 71, 59; c) G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3.