Supporting information

Construction of self-supported hierarchical bimetallic sulfide nanosheet arrays for supercapacitors with ultrahigh specific

capacitance

Lingxia Zheng,^{a,b} Jianlan Song,^{a,b} Xiaoying Ye,^{a,b} Yongzhi Wang,^{a,b} Xiaowei Shi^{a,b} and Huajun Zheng* ^{a,b}

^aState Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China

^bDepartment of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, P. R. China

E-mail: <u>zhenghj@zjut.edu.cn (H. Zheng)</u>

Fig. S1. XRD patterns of samples without Ni foam.

Fig. S2. N_2 adsorption-desorption isotherms and the corresponding pore size distribution of (a) Ni-S and (b) Co-S.

Fig. S3. EDS spectrum of the NiCo-S-1 sample.

Fig. S4. The XPS full-scan spectrum of NiCo-S-1.

Fig. S5. SEM images of samples (a,b) NiCo-MOF@CC and (c,d) NiCo-S@CC.

Fig. S6. (a) CV curves at different densities and (b) GCD curves at different current densities of NiCo-S-1 nanosheet arrays on carbon cloth.

Fig. S7. The electrochemical performance of NiCo-S-1//AC asymmetric supercapacitor. (a) CV curves within different potential windows at scan rate of 50 mV s⁻¹, (b) GCD curves within different potential windows at 5 A g⁻¹, (c) GCD curves at different current densities, (d) specific capacitance at different current densities.

Electrode	Electrolyte	Specific capacitance	Energy density, Power	ref.
materials			density	
CuCo ₂ S ₄ -	3 М КОН	2163 F g ⁻¹ @ 6 mA	44.1 W h kg ⁻¹ , 0.80 kW	1
HNN//AC		cm ⁻²	kg-1	
Zn-Co-S//AC	1 M KOH	2354.3 F g ⁻¹ @ 0.5 A	31.9 W h kg ⁻¹ , 0.85 kW	2
		g ⁻¹	kg ⁻¹	
Ni-Co-S//AC	1 М КОН	1406.9 F g ⁻¹ , 0.5 A g ⁻	24.8 W h kg ⁻¹ , 0.850 kW	3
		1	kg ⁻¹	
Ni-Co-S//AC	6 M KOH	2392 F g ⁻¹ , 1 A g ⁻¹	30.1 W h kg ⁻¹ , 0.800 kW	4
			kg ⁻¹	
NiCo ₂ S ₄ //AC	3 М КОН	1956 F g ⁻¹ , 1 A g ⁻¹ 1	27.5 W h kg ⁻¹ , 0.747 kW	5
			kg-1	
NiV ₂ S ₄ //AC	6 M KOH	639 Cg^{-1} , 2 mA cm ⁻²	45.1 W h kg ⁻¹ , 0.240 kW	6
			kg ⁻¹	
Ni-MOF //AC	3 М КОН	1057 F g ⁻¹ , 1 A g ⁻¹	21.05 W h kg ⁻¹ ,6.03 kW	7
			kg ⁻¹	
Ni-Co-S//AC	3 М КОН	1377.5 F g ⁻¹ , 1 A g ⁻¹	36.9 W h kg ⁻¹ ,1.066 kW	8
			kg ⁻¹	
NiCo ₂ S ₄ //AC	3 М КОН	3724 F g ⁻¹ , 1 A g ⁻¹	44.76 W h kg ⁻¹ , 0.80 kW	this
			kg^{-1}	work

Table S1. Summary of the electrochemical performance on the related electrodes for supercapacitors in literatures.

Table S2. The atomic content of Ni, Co, S in the sample NiCo-S-1.

Element	Ni	Со	S
Content(%)	12.56	29.86	22.05

- 1. S. E. Moosavifard, S. Fani and M. Rahmanian, *Chem. Commun.*, 2016, **52**, 4517-4520.
- K. Tao, X. Han, Q. Cheng, Y. Yang, Z. Yang, Q. Ma and L. Han, *Chem.*, 2018, 24, 12584-12591.
- 3. M. K. Wu, C. Chen, J. J. Zhou, F. Y. Yi, K. Tao and L. Han, *J. Alloy. Comp.*, 2018, **734**, 1-8.
- W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang and J. Liu, *Chem. Eng. J.*, 2019, **371**, 461-469.
- 5. L. Liu, T. Chen, H. Rong and Z. Wang, J. Alloy. Comp., 2018, 766, 149-156.
- 6. R. Kumar, P. Rai and A. Sharma, J. Mater. Chem. A, 2016, 4, 17512-17520.
- 7. P. Du, Y. Dong, C. Liu, W. Wei, D. Liu and P. Liu, *J. Colloid Interface Sci.*, 2018, **518**, 57-68.
- 8. C. Chen, M. K. Wu, K. Tao, J. J. Zhou, Y. L. Li, X. Han and L. Han, *Dalton T.*, 2018, **47**, 5639-5645.