Supporting Information

Ce-Mn Coordination Polymer Derived Hierarchical/Porous Structured CeO₂-MnO_x for Enhanced Catalytic Properties

Junwei Feng, ^a Yong Wang, ^{*b} Daowei Gao, ^a Baotao Kang, ^a Shun Li, ^{*c,d} Chunsheng Li ^a and Guozhu Chen*^a

^a School of Chemistry and Chemical Engineering, University of Jinan, 250022, China

^b Institut National de la Recherche Scientifique, 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2, Canada

^C Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

^dFoshan (Southern China) Institute for New Materials, Foshan, 528200, Guangdong, China

Email: chm_chengz@ujn.edu.cn; yong.wang@emt.inrs.ca; lis3@sustech.edu.cn

Fig. S1 HAADF-STEM image of CeO_2 -MnO_x (5:5) catalyst.

Fig. S2 SEM images of (a and b) Ce CPs, (c and d) Ce-Mn (7:3) CPs, (e and f) Ce-Mn (5:5) CPs, (g and h) Ce-Mn (3:7) CPs, and (i and j) Mn CPs.

Fig. S3 SEM images of (a and c) CeO_2 and (b and d) MnO_x .

Fig. S4 SEM image of CeO_2 -MnO_x (3:7) catalyst.

Fig. S5 XRD patterns of Ce CPs, Mn CPs, and Ce-Mn CPs with different ratios.

Fig. S6 The enlarged XRD patterns of CeO_2 (111) diffraction peak for CeO_2 and CeO_2 -MnO_x catalysts with different ratios.

Fig. S7 CO conversion curve (a) and NO conversion curve (b) of CeO_2 -MnO_x (5:5) prepared from impregnation method^{*} under the same space velocity (60 000 and 120 000 mL·h⁻¹·g⁻¹ of catalyst for CO oxidation and SCR of NH₃, respectively)

* The CeO₂-MnO_x (5:5) catalyst was prepared by a traditional impregnation method. Typically, 200 mg of commercial CeO₂ was impregnated with an aqueous solution containing the desired amount of Mn(NO₃)₂·4H₂O for 2 h. Then, the resulting solid was heated at 100°C to evaporate residual water. Finally, the product was dried in an oven at 110°C for 12 h and calcined at 500°C for 5 h in air.

Fig. S8 The original XPS spectra of (a) Ce 3d; (b) Mn 2p and (c) O 1s of CeO₂, MnO_x and CeO₂-MnO_x catalysts with different ratios.

Fig. S9 NH₃-TPD profiles of CeO₂, MnO_x and CeO_2 -MnO_x catalysts with different ratios.

Sample	Ce:Mn	Crystallite	S _{BET}	Pore size	Pore volume
	(mol/mol)	size ^α (nm)	(m ² /g)	(nm)	(cm ³ /g)
CeO ₂	1:0	10.0	53.08	8.80	0.15
CeO_2 -MnO _x (7:3)	7:2.99	4.1	83.46	8.28	0.21
CeO_2 -MnO _x (5:5)	5:4.99	3.8	77.76	8.37	0.21
CeO_2 - MnO_x (3:7)	3:7.92	5.0	70.81	9.68	0.22
MnO _x	0:1	-	27.47	13.80	0.14

Table S1. Crystallite size of CeO_2 , porous structure parameters and molar ratios (by ICP-OES) of the CeO_2 , MnO_x and CeO_2 - MnO_x catalysts with different ratios.

 α Calculated from the characteristic peak of CeO₂ (111) crystal face in the XRD patterns.