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Fig. S1 A low-magnification SEM image of (a) the C-Wood and (b) red P@C-Wood. The 

thickness of (c) the C-Wood and (d) red P@C-Wood (the size of red P@C-Wood is about 5 mm × 

5 mm × 0.8 mm).
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Fig. S2 SEM and EDS elemental mapping of red P nanoparticles.

Fig. S3 (a) TEM image of the red P@C-Wood. (b) A high-magnification SEM image of the C-

Wood. Photo images of the thickness of the C-Wood (c) and (d) red P@C-Wood



Fig. S4 Morphological and structural characterizations of the red P electrode at 

different states. The top view (a), (b), (e) and cross-section view (c), (d) of red P 

electrode, respectively. (f-h) Corresponding C, O, and P elemental mapping images of 

the red P electrode.

For the comparison, the red phosphorus is mixed with acetylene black and 

poly(vinylidene fluoride) (PVDF) to make a homogeneous slurry(the ratio was 8:1:1). 

Then the slurry is cast onto copper foil using a doctor blade, followed by drying in a 

vacuum 12 h at 60 °C. The mass loading of the electrodes is about 1.0 mg cm−2.



Fig. S5 XRD patterns of the C-Wood, red P and red P@C-Wood.

Table. S1 The red P loading of pure red P electrode and red P@C-Wood electrode.

Sample Red P loading（wt%） Red P loading（mg cm-

2）

Red P electrode 15 1.522

Red P@C-Wood 30 8.371

For the pure red P electrode, the red phosphorus loading (wt%) is calculated based on 

15% with half of a 12.5 µm copper current collector, red phosphorus, acetylene black 

and PVDF.



Fig. S6 (a) Cyclic voltammetry of pure red P electrode at the potential window between 0.01 and 

2.0 V versus Na/Na+ with a scan rate of 0.1 mV s−1; (b) cycling properties of the red P electrode at 

0.01 A g−1; (c) cycling properties of the pure red P electrode at 0.1 A g−1; (d) cycling properties of 

red P@C-Wood electrode at 0.3 A g−1.



Fig. S7 (a) Rate capabilities and (b) cycling properties of the red P@C-Wood electrode at 1.674 

mA cm-2. (c) Long cycling performance of the red P@C-Wood electrode at 16.742 mA cm-2.

Fig. S8 Cycling properties of the red P@C-Wood electrode at 0.78 A g−1 based on red P@C-

Wood, red P content is about 39 wt% (Red P@C-Wood = 100:50)



Table. S2 The elemental analyzer data of wood (wt%).

Materials C H N S O

Wood 47.21 6.62 0.09 0.88 45.69

Fig. S9 Evaluation of resistance using a multimeter.

Table. S3 The resistance of different materials.

Materials Resistance

Wood ≥ 40 M Ω

Red P electrode 1701 Ω

C-Wood 16.8 Ω

Red P@C-Wood 26.3 Ω



Table. S4 Comparison with red P based anodes for SIBs in literatures.

Materials P content in 

composites

P content 

in whole 

electrodea

Mass 

loading of 

P 

(mg/cm-2)

Reversible 

capacity

(based on 

P)

Reversible 

capacity 

(based on 

P/C 

composites)

Gravimetric 

capacity 

(based on 

whole 

electrode)a

Gravimetric 

capacity 

(based on 

whole 

electrode)a

Reference

Red P@C-

Wood

30 wt% 30 wt% 8.4 2239.8 

mAh g-1 at 

0.2 A g-1

791.8 mAh 

g-1 at 0.06 A 

g-1

791.8 mAh 

g-1 at 0.06 A 

g-1

18.8 mAh 

cm-2 at 1.67 

mA cm-2

This work

1057.8 

mAh g-1 at 

2.0 A g-1

320.5 mAh 

g-1 at 0.6 A 

g-1

320.5 mAh 

g-1 at 0.6 A 

g-1

8.9 mAh 

cm-2 at 16.7 

mA cm-2

This work

P/CNTs@rGO 70 wt% 70 wt% 1.5 2113 mAh 

g-1 at 0.52 

A g-1

1479 mAh 

g-1 at 0.42 A 

g-1

1479 mAh 

g-1 at 0.42 A 

g-1

3.2 mAh 

cm-2 at 0.78 

mA cm-2

1

P@N-MPC 

composites

22.6 wt% 5.2 wt% ~ 0.34 2522.1 

mAh g-1 at 

4.4 A g-1

570 mAh g-

1 at 1.0 A g-

1

131.5 mAh 

g-1 at 0.1 A 

g-1

0.85 mAh 

cm-2 at 1.5 

mA cm-2

2

P/CNTs@rGO 70 wt% 10.6 wt% ~ 2.2 2007.1 

mAh g-1 at 

0.74 A g-1

1405 mAh 

g-1 at 0.52 A 

g-1

211.9 mAh 

g-1 at 0.52 A 

g-1

4.4 mAh 

cm-2 at 1.6 

mA cm-2

3

P@C-GO/ 

MOF-5

~44.5 wt% 8.5 wt% ~0.45 1865.2 

mAh g-1 at 

4.5 A g-1

830 mAh g-

1 at 2.0 A g-

1

158.4 mAh 

g-1 at 0.17 A 

g-1

0.84 mAh 

cm-2 at 2.0 

mA cm-2

4

RP/rGO 57.9 wt% 57.9 wt% ~ 0.87 1550 mAh 

g-1 at 1 A 

g-1

897.4 mAh 

g-1 at 0.58 A 

g-1

897.4 mAh 

g-1 at 0.58 A 

g-1

1.35 mAh 

cm-2 at 0.87 

mA cm-2

5



P@AC@PPy 52 wt% 10 wt% 0.62 800 mAh 

g-1 at 0.1 A 

g-1

416 mAh g-

1 at 0.05 A 

g-1

80 mAh g-1 

at 0.01 A g-1

0.5 mAh 

cm-2 at 0.06 

mA cm-2

6

RH-3-1-RP/CS 60 wt% 23.4 wt% 3 1027 mAh 

g-1 at 4 A 

g-1

616.2 mAh 

g-1 at 2.4 A 

g-1

240.3 mAh 

g-1 at 0.9 A 

g-1

3.1 mAh 

cm-2 at 12 

mA cm-2

7

NRP−rGO 56.3 wt% 18 wt% 0.39 1176 mAh 

g-1 at 3.6 A 

g-1

662 mAh g-

1 at 2 A g-1

211.7 mAh 

g-1 at 0.65 A 

g-1

0.46 mAh 

cm-2 at 1.4 

mA cm-2

8

S-P/ rGO 45.6 wt% 12 wt% 0.9 1364.1 

mAh g-1 at 

2.6 A g-1

622 mAh g-

1 at 1.2 A g-

1

163.7 mAh 

g-1 at 0.31 A 

g-1

1.2 mAh 

cm-2 at 2.3 

mA cm-2

9

a. The calculated gravimetric capacity of whole electrode is based on the mass of 

active materials, binder, conductive additive and current collectors (Capacity electrode = 

capacity active materials/ (mass active materials + mass binder + mass conductive additive + mass current 

collectors)). The current density of whole electrode is according to the reported current 

density based on the P multiplying by the weight ratio of P in composites, such as : 

Current density electrode = Current density active materials × weight ratio active materials. All the 

loading mass is according to the reported value in references.
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