Electronic Supplementary information (ESI)

Enzyme-induced formation of Iron hybrid nanostructures

with different morphologies

Rocio Benavente,^a David Lopez-Tejedor,^a Maria del Puerto Morales,^b

Carlos Perez-Rizquez^a and Jose M. Palomo*^a

Figure S2. XPS analysis of 15min-reduced FeCO₃NRs-CALB. a) XPS full spectrum.b) XPS spectrum of C1s. c) XPS spectrum of O1s. d) XPS spectrum of Fe2p.

Figure S3. TEM images of different reduced-FeNRs-CALB hybrids. a) non-reduced FeCO₃NRs-CALB, b) 15min-reduced FeCO₃NRs-CALB, c) 30min-reduced FeCO₃NRs-CALB, d) 45min-reduced FeCO₃NRs-CALB or 60min-reduced FeCO₃NRs-CALB.

Figure S4. A. TEM image of 360 min-reduced $FeCO_3NRs$ -CALB hybrid. B. $FeCO_3$ nanorods size at different reducing times in the presence of sodium borohydride.

Figure S5. Characterization of 15 min-reduced Fe-CALB hybrid. A) XRD spectrum from the preparation (day 1) to 30 days. B) TEM images at different magnification of the hybrid after 30 days.

Figure S6. TEM analysis of CALB-Fe(0)nanoflowers.

Figure S7. TEM analysis of Fe(0)nanoparticles without protein.

MALPSGS<mark>D</mark>PA FSQPKSVL<mark>D</mark>A GLTCQGASPS SVSKPILLVP GTGTTGPQSF DSNWIPLSTQ LGYTPCWISP PPFMLNDTQV NTEYMVNAIT ALYAGSGNNK LPVLTWSQGG LVAQWGLTFF PSIRSKV<mark>D</mark>RL MAFAP<mark>D</mark>YKGT VLAGPL<mark>D</mark>ALA VSAPSVWQQT TGSALTTALR NAGGLTQIVP TTNLYSAT<mark>DE</mark> IVQPQVSNSP L<mark>D</mark>SSYLFNGK NVQAQAVCGP LFVI<mark>D</mark>HAGSL TSQFSYVVGR SALRSTTGQA RSA<mark>D</mark>YGIT<mark>D</mark>C NPLPAN<mark>D</mark>LTP <mark>E</mark>QKVAAAALL APAAAAIVAG PKQNC<mark>E</mark>P<mark>D</mark>LM PYARPFAVGK RTXSGIVTPS L Length:321 Mass (Da):33,433

Figure S8. Amino acids sequence of CALB. Asp and Glu marked in yellow. Sequence obtained from <u>https://www.uniprot.org/uniprot/B6DAC2</u>..

MRSSLVLFFV SAWTALASPI RR<mark>E</mark>VSQ<mark>D</mark>LFN QFNLFAQYSA AAYCGKNN<mark>D</mark>A PAGTNITCTG NACP<mark>E</mark>VEKA<mark>D</mark> ATFLYSF<mark>ED</mark>S GVG<mark>D</mark>VTGFLA L<mark>D</mark>NTNKLIVL SFRGSRSI<mark>E</mark>N WIGNLNF<mark>D</mark>LK <mark>E</mark>IN<mark>D</mark>ICSGCR GH<mark>D</mark>GFTSSWR SVA<mark>D</mark>TLRQKV <mark>ED</mark>AVR<mark>EH</mark>PDY RVVFTG<mark>H</mark>SLG GALATVAGAD LRGNGYDIDV FSYGAPRVGN RAFA<mark>E</mark>FLTVQ TGGTLYRIT<mark>H</mark> TN<mark>D</mark>IVPRLPP R<mark>E</mark>FGYS<mark>H</mark>SSP <mark>E</mark>YWIKSGTLV PVTRN<mark>D</mark>IVKI EGI<mark>D</mark>ATGGNN QPNIP<mark>D</mark>IPA<mark>H</mark> LWYFGLIGTC L Length:291 Mass (Da):31,807

Figure S9. Amino acids sequence of TLL. Asp and Glu marked in yellow. His in green. Sequence was obtained from https://www.uniprot.org/uniprot/O59952

Figure S10. A) 3D-surface of TLL with several aminoacid residues marked. Asp and Glu residues (blue), His (green), hydrophobic residues (Phe, Leu, Ile, Ala) (red). Pymol program using pdb file 1DT3 was used to prepare figures. B) Proposed iron coordination species induced by the protein in the presence of Triton X-100.

10	20	30	40	50
M <mark>e</mark> lalalsli	ASVAAAPTAT	LANG <mark>D</mark> TITGL	NAIIN <mark>E</mark> AFLG	IPFA <mark>E</mark> PPVGN
60	70	80	90	100
LRFK <mark>D</mark> PVPYS	GSL <mark>D</mark> GQKFTS	YGPSCMQQNP	<mark>E</mark> GTY <mark>EE</mark> NLPK	aal <mark>d</mark> lvmqsk
110	120	130	140	150
VF <mark>e</mark> avspss <mark>e</mark>	<mark>d</mark> Cltinvvrp	PGTKAGANLP	VMLWIFGGGF	<mark>e</mark> vggtstfpp
160	170	180	190	200
AQMITKSIAM	GKPII <mark>H</mark> VSVN	YRVSSWGFLA	G <mark>de</mark> ikaegsa	NAGLK <mark>D</mark> QRLG
210	220	230	240	250
MQWVA <mark>D</mark> NIAA	FGG <mark>D</mark> PTKVTI	FG <mark>E</mark> SAGSMSV	MC <mark>H</mark> ILWNDG <mark>D</mark>	NTYKGKPLFR
260	270	280	290	300
AGIMQSGAMV	PS <mark>D</mark> AV <mark>D</mark> GIYG	N <mark>E</mark> IF <mark>D</mark> LLASN	AGCGSAS <mark>D</mark> KL	ACLRGVSS <mark>D</mark> T
310	320	330	340	350
L <mark>ED</mark> ATNNTPG	FLAYSSLRLS	YLPRP <mark>D</mark> GVNI	T <mark>DD</mark> MYALVR <mark>E</mark>	GKYANIPVII
360	370	380	390	400
G <mark>D</mark> QND <mark>E</mark> GTFF	GTSSLNVTTD	AQAR <mark>E</mark> YFKQS	FV <mark>H</mark> AS <mark>D</mark> AEID	TLMTAYPG <mark>D</mark> I
410	420	430	440	450
TQGSPF <mark>D</mark> TGI	LNALTPQFKR	I SAVLG <mark>D</mark> LGF	TLARRYFLN <mark>H</mark>	YTGGTKYSFL
460	470	480	490	500
SKQLSGLPVL	GTF <mark>H</mark> SN <mark>D</mark> IVF	QDYLLGSGSL	IYNNAFIAFA	T <mark>D</mark> L <mark>D</mark> PNTAGL
510	520		530	540
LVKWP <mark>E</mark> YTSS	SQSGNNLMMI	NALGLYTGK <mark>D</mark>	NFRTAGY <mark>D</mark> AL	FSNPPSFFV

Length:549 Mass (Da):58,550

Figure S11. Aminoacid sequence of CRL. Asp and Glu marked in yellow. His in green. Sequence was obtained from <u>https://www.uniprot.org/uniprot/P20261</u>

Figure S12. 3D-surface of CRL with several aminoacid residues marked. A) Asp and Glu residues (blue), His (green). B) Asp and Glu residues (blue), His (green), hydrophobic residues (Phe, Leu, Ile, Ala) (red). Pymol program using pdb file 1CRL was used to preparing figures.

MS<mark>D</mark>KKSLMPL VGIPG<mark>E</mark>IKNR LNIL<mark>D</mark>FVKN<mark>D</mark> KFFTLYVRAL QVLQAR<mark>D</mark>QS<mark>D</mark> YSSFFQLGGI <mark>h</mark>glpyt<mark>e</mark>wak aqpql<mark>h</mark>lyka nycthgtvlf ptw<mark>h</mark>ray<mark>e</mark>st W<mark>E</mark>QTLW<mark>E</mark>AAG TVAQRFTTSD QA<mark>E</mark>WIQAAK<mark>D</mark> LRQPFW<mark>D</mark>WGY WPN<mark>D</mark>PDFIGL P<mark>D</mark>QVIR<mark>D</mark>KQV EITDYNGTKI EVENPIL<mark>H</mark>YK F<mark>H</mark>PIEPTFEG DFAQWQTTMR YP<mark>D</mark>VQKQ<mark>E</mark>NI <mark>E</mark>GMIAGIKAA APGFR<mark>E</mark>WTFN MLTKNYTW<mark>E</mark>L FSN<mark>H</mark>GAVVGA <mark>H</mark>ANSL<mark>E</mark>MVHN TV<mark>H</mark>FLIGR<mark>D</mark>P TL<mark>D</mark>PLVPG<mark>H</mark>M GSVP<mark>H</mark>AAF<mark>D</mark>P IFWM<mark>HH</mark>CNV<mark>D</mark> RLLALWQTMN YDVYVS<mark>E</mark>GMN R<mark>E</mark>ATMGLIPG QVLT<mark>ED</mark>SPL<mark>E</mark> PFYTKNQ<mark>D</mark>PW QS<mark>DDLEDWE</mark>T LGFSYP<mark>D</mark>F<mark>D</mark>P VKGKSK<mark>EE</mark>KS VYIN<mark>DWVH</mark>KH YGFVTTQT<mark>E</mark>N PALRLLSSFQ RAKS<mark>DH</mark>ETQY ALY<mark>D</mark>WVI<mark>H</mark>AT FRYY<mark>E</mark>LNNSF SIIFYF<mark>DE</mark>G<mark>E</mark> GCTL<mark>E</mark>SIIGT V<mark>D</mark>AFRGTTS<mark>E</mark> NCANCARSQ<mark>D</mark> LIA<mark>E</mark>GFV<mark>H</mark>LN YYIGC<mark>D</mark>IGQ<mark>H</mark> A<mark>dhedd</mark>avpl y<mark>e</mark>ptrvk<mark>e</mark>yl kkrkigckvv sa<mark>e</mark>g<mark>e</mark>ltslv v<mark>e</mark>ikgapyyl PVG<mark>E</mark>ARPKL<mark>D HE</mark>KPIVIL<mark>DD II</mark>HRVN

Length:576 Mass (Da):66,267

Homodimer HL units

Figure S13. Aminoacid sequence of tyrosinase from *A. bisporus*. Asp and Glu marked in yellow. His marked in green. Sequence was obtained from <u>https://www.uniprot.org/uniprot/C7FF04</u>

Figure S14. A. 3D-structure of Tyrosinase from *A. bisporus* (TYR). B. Typical part of amino acids residues involved on the iron coordination. C) 3D-surface of TYR with several amino acid residues marked. Asp and Glu residues (blue), His (green). D) 3D-surface of TYR with several amino acid residues marked. Asp and Glu residues (blue), His (green), hydrophobic residues (Phe, Leu, Ile, Ala) (red). Pymol program using pdb file 2y9w was used to preparing figures.

Figure S15. Magnetization hysteresis loops of Fe-protein hybrids. A) using ovoalbumin. B) using catalase.