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In the following paragraphs we apply dif-
ferent models of electron transport to our
transport data. The general form of the con-
ductivity (T) dependence is given by: ¢(T) =
0o - exp[—(Ty/T)*], where x changes for var-
ious transport mechanisms. For the vari-
able hopping rage model where the density
of states is gapless and there is no electron-
electron interactions the conductivity depen-
dence changes with the temperature as T~ /4
for 3-dimentional systems and as T~1/3 for 2-
dimentional systems. If the electron-electron
interactions take place, the variable range
hopping occurs with x = % Figures S1(a)-(b)
show the relation between conductivity and
temperature for the capped sample for vari-
ous transport mechanisms. The green and or-
ange curves present the Mott-Davis variable
range hopping models. The grey and black
curves show the conductivity dependece for

Efros-Shklovskii variable range hopping and
the band transport models, respectively. Blue
curve corresponds to anomalous exponent of
x >~ 0.66.
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Figure S1: Various conductivity models for
the capped sample.

In further sections 1 and 2 we present the
detailed studies of the choosen models.



1 Band transport (hopping
exponent = 1)

Although band transport model does not fit
the whole temperature range, it can be ap-
plied to some parts of data. Figure S2 presents
the resistivity of the uncapped and capped
samples as a function of the inverse temper-
ature. A fit of p=pg-exp(E,;/kgT), where pg =
1 Q) - cm provides activation energies E; be-
low T=100 K: ~ 14 meV and ~ 13 meV for the
uncapped and capped MoTe,, respectively.
Above T=150 K: ~ 27 meV and ~ 21 meV for
uncapped and capped 2 ML, respectively.
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Figure S2: The resistivity as a funcion of
inverse temperature for the uncapped and
capped samples. Dashed lines show fitted
curves.

They are considerably smaller than energy
gap of 2H — MoTe; (E; ~1 eV) and reason-
ably correspond to the energies of shallow im-
purities in 2H — MoTe;. The obtained val-
ues of activation energies are similar to ener-
gies observed before, for thicker TMD layers,
grown by molecular beam epitaxy. !

2 Hopping transport (hop-
ping exponent = } or ;)

Variable range hopping model was applied to
analyse the data. The conductivity is given
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Figure S3: The conductivity as a function of
inverse temperature for the uncapped and
capped samples with Efros-Shklovskii model.
Dashed lines show fitted curves.

by the o(T) = agexp(—(%)%) expression,
where Ty and 0y are constant parameters. The
two parameters carry important information
about the hopping process: the optimal hop-
ping distance (d;) and energy difference (Ej).
They are given by d;, = 0.25- a‘l(%)% and
Ey, = 0.5 kp(TyT)2,® where & = m%;gof’klg,
B - parameter of the order of unity,* ¢ - ele-
mentary charge, €p - absolute permittivity, ¢,
- relative permittivity (¢,; =9.6 and ¢,=21.6 -
anisotropic for bilayer of 2H — MoTe;).® Fig-
ure S3 presents the conductivity of the capped

and uncapped samples as a function of T2
with fits. The value of Ty is presented in Ta-
ble S1. Figures S4(a)-(b) show the calculated
values of the optimal hopping distances and
energies as a function of temperature, for an
average value of relative permittivity, respec-
tively. The optimal hopping distance stays
very low for both samples, and equals about
1 nm. The hopping energy is of the order of
few tens of meV. The similar values of op-
timal hopping distances and hopping ener-
gies show that despite the capping layer, the
charge transport is similar for both samples.
Figure S5 presents the conductivity of the
capped sample as a function of temperature



Table S1: Ty parameters obtained from Efros-Shklovskii variable-range hopping model.

Sample: 2ML
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Figure S4: The dependence of (a) the optimal
hopping distances on the temperature and
(b) optimal hopping energies on the temper-
ature for the uncapped and capped samples
for < e, >=14.4. The double dependence for
the capped sample results from a change in
the curve slope in its conductivity (see Fig-
ure S3 at T ~ 67 K) and bilinear fit. The strips
around the calculated curves present the stan-
dard deviation of the mean.

with the value of the hopping exponent x = 411

(see green curve in the Figure S1) with fit-
ted lines at the periferies of p(T) curves. Al-
though one can fit linear dependences lo-
cally, the overall character of p(T) depen-
dence does not agree with nearest-neighbour
hopping model.
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Figure S5: The conductivity as a function of
inverse temperature for capped sample with
Mott-Davis model. Dashed lines show fitted
curves.
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