# **Electronic supplementary information (ESI)**

## Highly Conductive, Stretchable, and Breathable Epidermal Electrode

### **Based on Hierarchically Interactive Nano-network**

You Jun Fan<sup>tabc</sup>, Peng Tao Yu<sup>tac</sup>, Fei Liang<sup>ac</sup>, Xin Li<sup>ac</sup>, Hua Yang Li<sup>d</sup>, Lu Liu<sup>ac</sup>, Jin Wei Cao<sup>d</sup>, Xue Jiao Zhao<sup>ac</sup>, Zhong Lin Wang<sup>ace</sup>, and Guang Zhu<sup>acd</sup>\*

<sup>a</sup>CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China

<sup>b</sup>State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

<sup>c</sup>School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

<sup>d</sup>New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China

eSchool of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States

‡ These authors contributed equally.







**Fig. S2** (a) Stress–strain curves for the pure TPU nanofiber mat and the SEE. (b) UV-Vis absorbance spectra of the SEE with different thickness and a pure TPU nanofiber film.



**Fig. S3** SEM images of the SEE with different structures before (left) and after (right) stretching (a, c, e), and their cyclic change in resistance  $\Delta R/R_0$  versus strain(b, d, f). (a) The SEE with layer by layer structure that AgNWs are deposited on TPU nanofiber mat. (c) The SEE with bonding interactive nanonetwork of TPU nanofibers and AgNWs. (e) The SEE of hierarchically interactive nanonetwork with discrete distribution of AgNWs.



**Fig. S4** SEM images of the SEE with different AgNWs contents and different component ratio of D30 and D120 AgNWs (v=Weight D30 AgNWs / Weight total AgNWs).



**Fig. S5** Schematic diagram of the initial configuration (left) and the deformed configuration (right) at a uniaxial strain for the nano-network of the SEE.



Fig. S6 Photographs of elastic circuits fabricated by SEE on a flexible PDMS film before (a) and after (b) stretching.



**Fig. S7** Permeability property of water for the SEE, comparing with the evaporation of water in an open environment.

| Materials                              | Strategies                                             | Conductivity/Sheet<br>resistance                                                       | Stretchability                          | Reference |
|----------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|-----------|
| AgNWs                                  | Roll-roll welding                                      | Single-sided conductive, 5 $\Omega$ sq $^{\rm 1}$                                      | Strain <2%                              | 1         |
| AgNWs on PET                           | Direct printed on PET                                  | Single-sided conductive, 100 $\Omega$ sq^-1                                            | No stretchability                       | 2         |
| Ag NWs/PDMS                            | Composite                                              | 9.8Ω                                                                                   | Increase with strain up to 100%         | 3         |
| Ag-MWNT/ PVDF                          | Composite                                              | 3100 S cm <sup>-2</sup> at 8.60 wt% Ag<br>flakes.                                      | 20 S cm <sup>-2</sup> at 140%<br>strain | 4         |
| AgNWs/PU                               | Layer-by-layer<br>filtration                           | 10000 S m <sup>-1</sup>                                                                | 250%                                    | 5         |
| AgNW/dopamine<br>-modified PDMS        | Composite                                              | $35\Omega$ sq <sup>-1</sup> , at 7 wt % AgNWs.                                         | Stable within 15%                       | 6         |
| Ultralong<br>AgNWs/ Ecoflex            | Transferring on a pre-<br>strained (300%)<br>elastomer | Single-sided conductive, 9-70 $\Omega$ sq <sup>-1</sup>                                | 460%                                    | 7         |
| PUS/AgNW/<br>PDMS                      | 2D/3D binary<br>networks                               | 8.35-19.2 S cm <sup>-1</sup> , AgNW mass fraction (0.5-3.3%)                           | Increase by 160% at 100% strain         | 8         |
| Au-AgNW/ SBS                           | Composite, Au coated<br>Ag NWs                         | 41850 S cm <sup>-1</sup> , at Au-AgNW weight fraction of 60%-75%                       | 266% (max:840%)                         | 9         |
| 3D AgNW/PDMS                           | 2D/3D binary<br>networks                               | 21.5 S cm <sup>-1</sup> , at AgNW density of 25 mg cm <sup>-3</sup>                    | Increase by 150% at<br>100%             | 10        |
| AgNW/PU                                | Composite                                              | 8-44.7 Ω sq <sup>-1</sup>                                                              | Conductive at 60%                       | 11        |
| AgNW/PDMS/Zo<br>ny                     | Composite                                              | 4.5 Ω sq <sup>-1</sup>                                                                 | Increase with strain up to 100%         | 12        |
| AgNW/PU<br>nanofibers                  | layer-by-layer                                         | 9190 S cm <sup>-1</sup>                                                                | 310%                                    | 13        |
| Epoxy/NBR                              | Epoxy/NBR fiber spray                                  | 51 Ω                                                                                   | less than 150 $\Omega$ by               | 14        |
| & AgNW/PU                              | coated with AgNW/PU nanocomposite                      |                                                                                        | stretching up to 40%                    |           |
| Muliti-level<br>AgNWs/TPU<br>nanofiber | Hierarchically<br>interactive nano-<br>network         | 4800 S cm <sup>-1</sup> (0.41 $\Omega$ sq <sup>-1</sup> ), at volume fraction of 1.59% | Conductive at 500% strain               | This work |

#### Table S1. The performance comparisons among AgNW-based electrodes.

#### Reference

- 1 S. J. Lee, Y.-H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T.-W. Lee, G.-R. Yi and J. H. Cho, Nanoscale, 2014, **6**, 11828-11834.
- 2 P.-H. Wang, S.-P. Chen, C.-H. Su and Y.-C. Liao, *Rsc Adv.*, 2015, **5**, 98412-98418.
- 3 C. Yan, X. Wang, M. Cui, J. Wang, W. Kang, C. Y. Foo and P. S. Lee, Adv. Energy Mater., 2014, 4, 1301396.
- K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi and S. Baik, *Nat. Nanotech.*, 2010, 5, 853-857.
  C. S. Boland, U. Khan, H. Benameur and J. N. Coleman, *Nanoscale*, 2017, 9, 18507-18515.

- 6 T. Akter and W. S. Kim, ACS Appl. Mater. Interfaces, 2012, 4, 1855-11859.
- 7 P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, *Adv. Mater*, 2012, **24**, 3326-3332.
- 8 J. Ge, H. B. Yao, X. Wang, Y. D. Ye, J. L. Wang, Z. Y. Wu, J. W. Liu, F. J. Fan, H. L. Gao, C. L. Zhang and S. H. Yu, *Angew. Chem. Int. Ed.*, 2013, **52**, 1654-1659.
- 9 S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S.-W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon and D. H. Kim, *Nat. Nanotech.*, 2018, **13**, 1048-1056.
- 10 H. L. Gao, L. Xu, F. Long, Z. Pan, Y. X. Du, Y. Lu, J. Ge and S. H. Yu, *Angew. Chem. Int. Ed.*, 2014, **53**, 4561-4566.
- 11 W. Hu, X. Niu, R. Zhao and Q. Pei, Appl. Phys. Lett., 2013, 102, 38.
- 12 J. Wang, C. Yan, W. Kang and P. S. Lee, Nanoscale, 2014, 6, 10734-10739.
- 13 Z. Jiang, M. O. G. Nayeem, K. Fukuda, S. Ding, H. Jin, T. Yokota, D. Inoue, D. Hashizume and T. Someya, *Adv. Mater.*, 2019, **31**, 1903446.
- 14 H. Y. Liu, H. C. Hsieh, J. Y. Chen, C. C. Shih, W. Y. Lee, Y. C. Chiang, W. C. Chen. *Macromol. Chem. Phys.* 2019, **220**, 1800387.