Iron ions irradiated Bi₂Te₃ nanosheets with defects and regulated hydrophilicity to enhance hydrogen evolution reaction

Qingtao Wang,*a Kai Cui,^a Jian Li,^a Yanxia Wu,^a Yaoxia Yang,^a Xiaozhong Zhou,^a Guofu Ma,^a Zhiwang Yang,^a Ziqiang Lei,^a Shufang Ren*^b

a Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China E-mail: wangqt@nwnu.edu.cn

b Key Laboratory of Evidence Science Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730070, China E-mail: rsf@gsli.edu.cn

Fig. S1 XRD pattern of Bi_2Te_3 nanosheets.

Fig. S2 HRTEM image of as-prepared $Fe-Bi_2Te_3$ nanosheets.

Fig. S3 (a) XPS spectra of Bi_2Te_3/Ti and $Fe-Bi_2Te_3/Ti$, (b) Fe 2p spectrum of Fe- Bi_2Te_3/Ti .

Fig. S4 (a) and (b) HRTEM images of $Fe-Bi_2Te_3$ nanosheets.

Fig. S5 The CV measurements of (a) Fe-Bi₂Te₃/Ti and (b) Bi_2Te_3 /Ti in the potential region of 0.05-0.15 V (vs. RHE) in 0.5 M H₂SO₄.

The ECSA can be calculated from the C_{dl} according to:

$$RF = \frac{C_{dl}}{C_s}$$

Where, C_s is the capacitance of a flat standard electrode with 1 cm² of real surface area, which is generally in the range of 20 to 60 μ F·cm⁻². The C_s value used here is 40 μ F·cm⁻².

The RF (Roughness Factor) of Fe-Bi₂Te₃/Ti:

$$RF = \frac{C_{dl}}{C_s} = \frac{1.26 \ mF \ cm^{-2}}{40 \ \mu F \ cm^{-2}} = 31.5$$

The RF of Bi₂Te₃/Ti:

$$RF = \frac{C_{dl}}{C_s} = \frac{0.11 \ mF \ cm^{-2}}{40 \ \mu F \ cm^{-2}} = 2.8$$

The ECSA of Fe-Bi₂Te₃/Ti, where A is the area:

 $ECSA = RF \times A = 31.5 \ cm^{-2}$

The ECSA of Bi₂Te₃/Ti:

 $ECSA = RF \times A = 2.8 \ cm^{-2}$

Fig. S6 (a) LSV curves of the Bi_2Te_3/Ti catalyst before and after 2000 CV cycles.