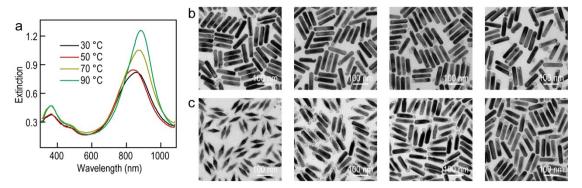
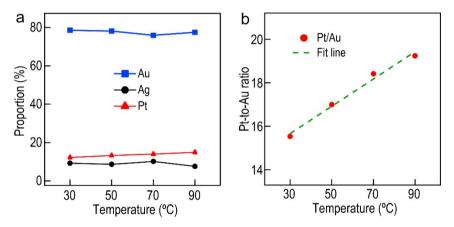

## **Electronic Supplementary Information**

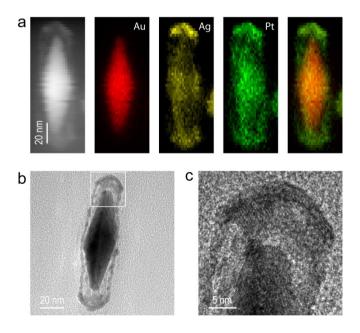
## Gold nanobipyramid-embedded silver—platinum hollow nanostructures for monitoring stepwise reduction and oxidation reactions


Juan Xu,<sup>a</sup> Qinru Yun,<sup>a</sup> Changshun Wang,<sup>a</sup> Manman Li,<sup>b</sup> Si Cheng,<sup>b</sup> Qifeng Ruan,<sup>c</sup> Xingzhong Zhu\*<sup>a</sup> and Caixia Kan\*<sup>a</sup>

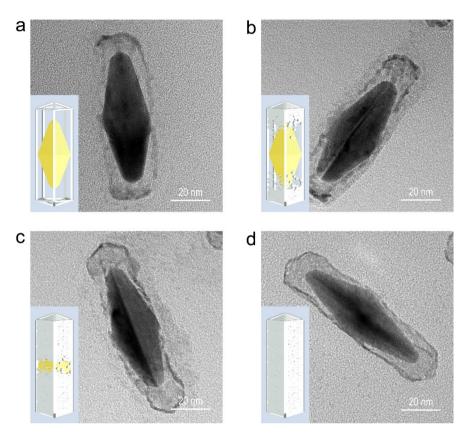
- <sup>a</sup> College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. E-mail: cxkan@nuaa.edu.cn; xzzhu@nuaa.edu.cn
- <sup>b</sup> College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215021, China
- <sup>c</sup> Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore


## Supplementary figures

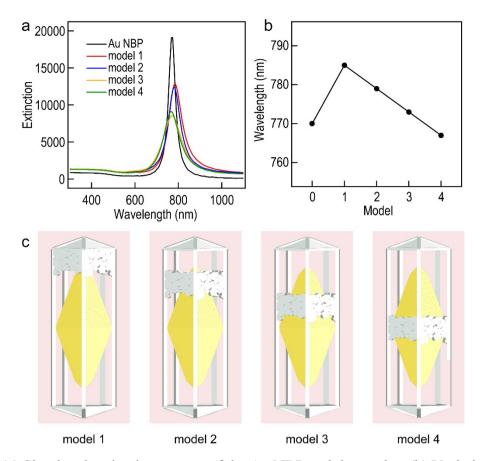



**Fig. S1** (a) TEM image of Au NBPs with average waist width of  $21 \pm 1$  nm and length of 69  $\pm 3$  nm. (b) TEM image of the Au NBP@Ag nanorods with average diameter of  $24 \pm 1$  nm and length of  $105 \pm 4$  nm.

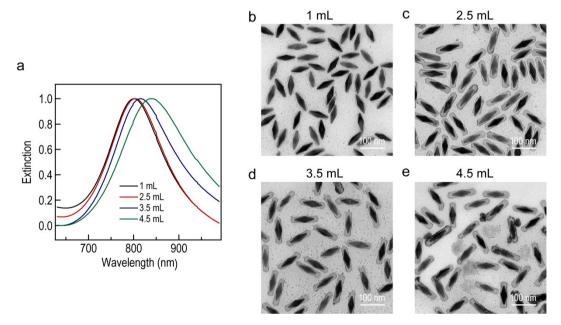



**Fig. S2** (a) Extinction spectra of the (Au NBP@Ag)@AgPt nanostructures after etching with  $H_2O_2$  at different temperatures. TEM images of the (Au NBP@Ag)@AgPt nanostructures (b) before and (c) after etching with  $H_2O_2$  at different temperatures.

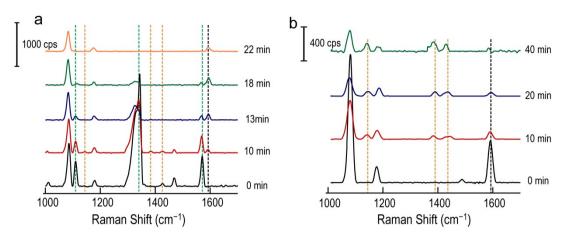



**Fig. S3** ICP-AES measurements. (a) The proportion of Au, Ag and Pt elements in the Au NBP@AgPt hollow nanostructures that varied with the temperatures. (b) Dependence of the Pt-to-Au atomic ratio of the Au NBP@AgPt hollow nanostructures on temperature.




**Fig. S4** (a) HAADF-STEM and elemental mapping images of a single Au NBP@AgPt nanoframe. The elemental mapping images have the same size scale as the HAADF-STEM image. (b) TEM image of a single Au NBP@AgPt nanoframe. (c) HRTEM image recorded in the region indicated with the white box in (b).




**Fig. S5** (a–d) HRTEM images of a single Au NBP@AgPt hollow nanostructure obtained at 30 °C, 50 °C, 70 °C and 90 °C, respectively.



**Fig. S6** (a) Simulated extinction spectra of the Au NBP and the modes. (b) Variation of the longitudinal dipolar plasmon wavelength as a function of the model. The point of model 0 represents the Au NBP. (c) Schematic models utilized in the simulations.



**Fig. S7** (a) Extinction spectra and (b–e) TEM images of Au NBP@AgPt nanostructures with varied amount of H<sub>2</sub>PtCl<sub>6</sub> in CTAC condition.



**Fig. S8** Time-dependent SERS spectra collected during (a) the reduction of 4-NTP by NaBH<sub>4</sub> and (b) the oxidation of 4-ATP by  $H_2O_2$  under excitation at 785 nm. The reaction catalyzed by the Au NBP@AgPt nanoframes produced at 30 °C in CTAB condition.