

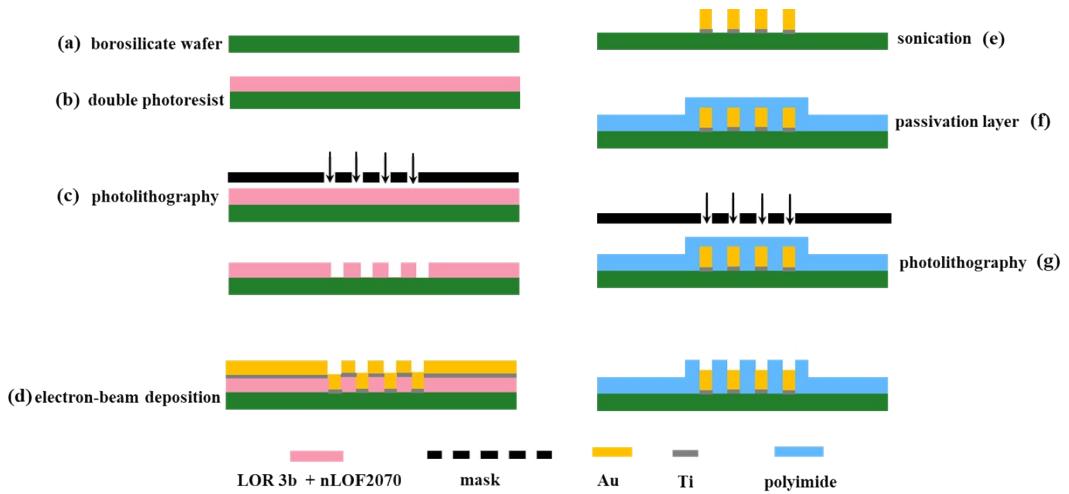
Supplementary Material

Electrochemical dual-aptamer biosensor based on nanostructured multielectrode arrays for the detection of neuronal biomarkers

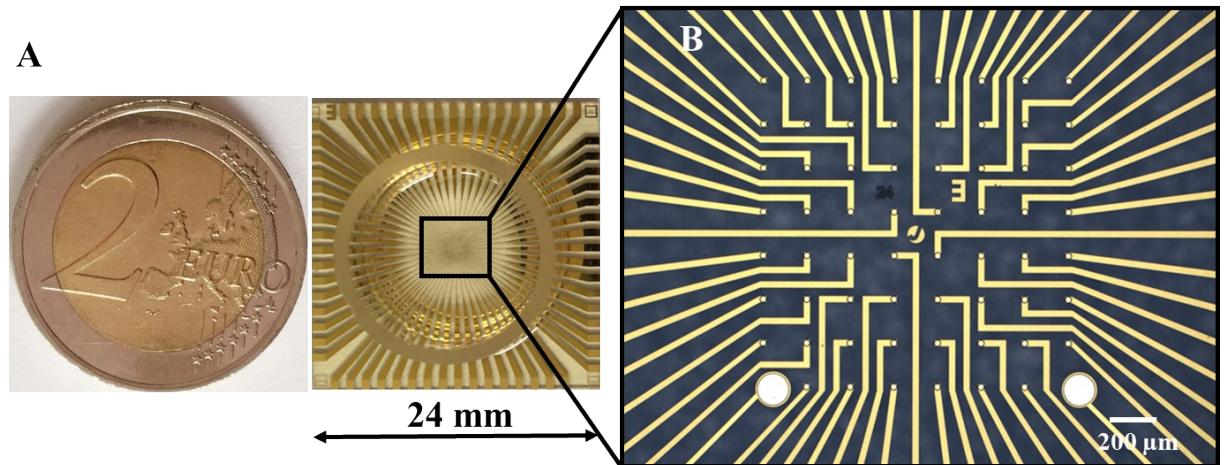
Yuting Zhang^{a,b}, Gabriela Figueroa-Miranda^{a,b}, Changtong Wu^{a,b}, Dieter Willbold^{c,d},
Andreas Offenhäusser^{a,b}, Dirk Mayer^{a*}

^aInstitute of Biological Information Processing, Bioelectronics (IBI-3),
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

^bFaculty I, RWTH Aachen, 52062 Aachen, Germany


^cInstitute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, 52428
Jülich, Germany

^dInstitut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225
Düsseldorf, Germany


E-mail addresses: dirk.mayer@fz-juelich.de (D. Mayer).

Multielectrode arrays preparation and cleaning

Multielectrode arrays (MEAs) were produced in an ISO 1-3 cleanroom on a borosilicate wafer with a thickness of 500 μm and a diameter of 100 mm, shown in Fig. S1. Firstly, the wafer was spin-coated by a double resist system LOR 3b (Microchem, Newton, MA) and nLOF2070 (MicroChemicals, Ulm, Germany). The feedlines and the 64 microelectrodes pattern were defined via standard photolithography and followed by electron-beam deposition of 10 nm Ti and 200 nm Au, respectively (Pfeiffer PLS 570, Pfeiffer Vacuum, Asrlar, Germany). Then, a sonication assisted lift-off step was performed in acetone to remove the photoresist layers. In order to insulate the feedlines, a polyamide (PI) passivation layer was spin-coated onto the wafer. The electrodes and contact pads were directly opened by photolithography with a mask determining their size. Finally, the wafer was diced into individual $24 \times 24 \text{ mm}^2$ chips (9 chips/wafer) for further use. For cleaning, new MEAs chips were firstly placed in a chip holder and sonicated in acetone, isopropanol, and Milli-Q water for 5 min, respectively. Then a glass ring with a height of 5 mm and a diameter of 20 mm was adhered to the center of the cleaned chip as a reservoir by a mixture of PDMS and curing agent, Fig. S2. An oxygen plasma oven (Diener Electronic, Germany) was used for MEAs chip cleaning at an O_2 pressure of 0.5 mbar, 50% power, with duration of 3 min.

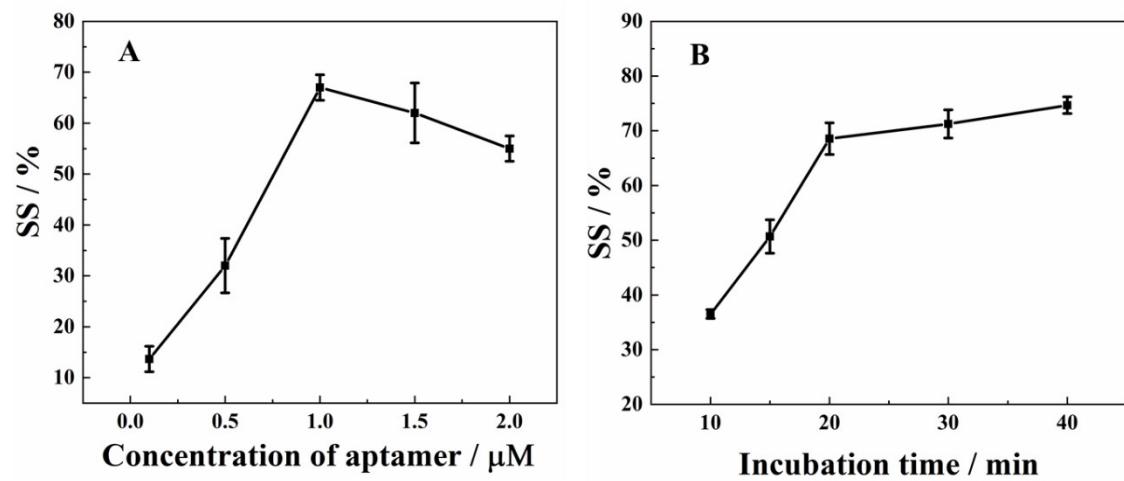


Fig. S1 Fabrication process of multielectrode arrays: (a–b) spin-coating of photoresists; (c) photolithography patterning of gold electrodes; (d) electron-beam deposition of Ti and Au; (d–e) lift-off process assisted by sonication; (f) spin-coating of polyimide for insulating the feedlines; (g) defining the electrode openings and contact pads by photolithography.

Fig. S2 (A) Borosilicate / gold MEAs with glass ring as electrochemical reservoir cell; (B) central part of the chip with gold feedlines and 64 microelectrodes.

Optimize aptasensor parameters

Fig. S3 Effects of aptamer concentration (A) and A_βO incubation time (B) on the sensor signal for the detection of 1 nM A_βO in 10 mM Tris-HCl + 150 mM NaCl + 5 mM KCl.

Table S1 Performance comparison of the proposed electrochemical aptasensor with other A β O sensors.

Method	Linear range	Detection limit	Ref.
ELISA	12.5 pg/mL – 200 pg/mL	10.7 pg/mL	1
Fluorescent aptasensor	0 μ M – 19.25 μ M	3.57 nM	2
Electrochemical biosensor	20 pM – 100 nM	8 pM	3
Upconversion fluorescent	0.2 nM – 15 nM	36 pM	4
Peptide-linked immunosorbent assay	0.35 pM – 1.5 pM	-	5
Electrochemiluminescence	0.1 ng/mL – 10 ng/mL	19.95 fg/mL	6
Aptasensor based on 3D-GME	1 pM – 200 nM (10 pg/mL – 2 μ g/mL)	0.3 pM 3 pg/mL	This work

The regeneration of MEA electrodes by O₂ plasma cleaning

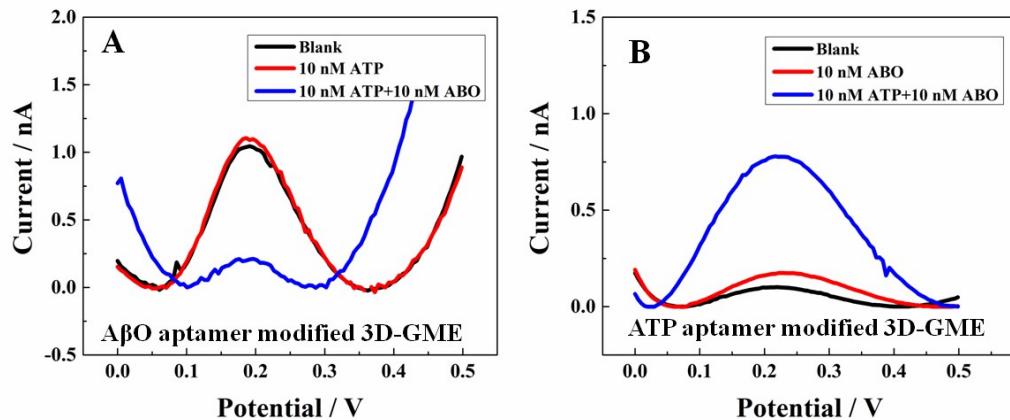

Another approach to regenerate the MEA electrodes is an O₂ plasma cleaning, which however acts globally on all microelectrodes of the chip. Here, a protocol of 0.5 mbar O₂ pressure, 50% power, and an etching time of 3 minutes was used to remove the molecules with sulphydryl groups from the 3D-GMEs. After O₂ plasma cleaning, soaking in ethanol is required to reduce the oxide layer which formed during the plasma cleaning.⁷ After O₂ plasma cleaning and ethanol soaking for 20 minutes, the regenerated microelectrode recovered the original surface mostly, Fig. 5B. A minor increase in the surface area can be noticed presumably caused by a slight degeneration of the electrode passivation. However, the 3D structure was not significantly altered by the O₂ plasma treatment. Consequently, both cleaning methods are suitable for 3D-GME cleaning. The O₂ plasma can be used to regenerate the entire 3D-GME arrays after usage to reset it for a second application. The electrochemical reactivation in NaOH and H₂SO₄ can selectively regenerate individual microelectrodes due to the ability to apply the potential only to a specific electrode, which is crucial for multiple receptor modification and multiple target detection.

Table S2 Performance comparison of the proposed electrochemical aptasensor based on 3D-GMEAs with other ATP sensors.

Method	Linear range	Detection limit	Ref.
Electrochemical current rectification	0–5 μ M	114 nM	8
Biosensor on microelectrodes	0.25 μ M – 4 μ M	9.9 nM	9
Biosensor on MB aptamer	0.1 μ M – 50 μ M	0.05 μ M	10
Fluorescent sensor	–	5 μ M	11
Fluorescence resonance energy transfer assay	2 μ M – 16 μ M	1.7 μ M	12
HPLC	1 μ M – 12 μ M	–	13
Aptamer sensor	1 μ M – 1000 μ M	1 μ M	14
Aptasensor using IOECTs	0.1 nM and 100 nM	0.01 nM	15
Aptasensor based on 3D-GME	0.01 nM – 1000 nM	0.002 nM	This report

Simultaneous detection of $\text{A}\beta\text{O}$ and ATP in aCSF

In order to prove that the developed dual-aptasensor platform can selectively detect two targets when they coexist in the sample solution, the dual-aptasensor was first challenged with the non-binding target and subsequently with the matching target. After adding 10 nM ATP to the sample solution, the ACV curve of the $\text{A}\beta\text{O}$ aptamer modified 3D-GME did not exhibit a significant current reduction, Fig. S4A. However, after adding 10 nM $\text{A}\beta\text{O}$, the current signal decreased sharply, which indicated that the presence of ATP did not affect the specificity of $\text{A}\beta\text{O}$ detection. For ATP aptamer modified 3D-GME, similar observations were made such that the addition of $\text{A}\beta\text{O}$ did not alter the ACV current while the subsequent administration of ATP causes a considerable on-signal response, Fig. S4B.

Fig. S4 (A) ACV curves obtained from $\text{A}\beta\text{O}$ aptamer modified 3D-GMEs before (black line) and after adding firstly 10 nM ATP (red line) and secondly 10 nM $\text{A}\beta\text{O}$ (blue line); (B) ACV curves obtained from ATP aptamer modified 3D-GMEs before (black line) and after adding firstly 10 nM $\text{A}\beta\text{O}$ (red line), and secondly 10 nM ATP (blue line).

References

1. J. A. Kim, M. Kim, S. M. Kang, K. T. Lim, T. S. Kim and J. Y. Kang, *Biosensors and Bioelectronics*, 2015, **67**, 724-732.
2. L. Zhu, J. Zhang, F. Wang, Y. Wang, L. Lu, C. Feng, Z. Xu and W. Zhang, *Biosensors and Bioelectronics*, 2016, **78**, 206-212.
3. N. Xia, X. Wang, B. Zhou, Y. Wu, W. Mao and L. Liu, *ACS applied materials & interfaces*, 2016, **8**, 19303-19311.
4. L.-F. Jiang, B.-C. Chen, B. Chen, X.-J. Li, H.-L. Liao, H.-M. Huang, Z.-J. Guo, W.-Y. Zhang and L. Wu, *Talanta*, 2017, **170**, 350-357.
5. E. G. Matveeva, J. R. Moll, M. M. Khan, R. B. Thompson and R. O. Cliff, *ACS chemical neuroscience*, 2017, **8**, 1213-1221.
6. Y. Jia, L. Yang, R. Feng, H. Ma, D. Fan, T. Yan, R. Feng, B. Du and Q. Wei, *ACS applied materials & interfaces*, 2019, **11**, 7157-7163.
7. S. Gandhi and A. Y. Abramov, *Oxidative medicine and cellular longevity*, 2012, **2012**.
8. L. Feng, A. Sivanesan, Z. Lyu, A. Offenhäusser and D. Mayer, *Biosensors and bioelectronics*, 2015, **66**, 62-68.
9. B. A. Patel, M. Rogers, T. Wieder, D. O'Hare and M. G. Boutelle, *Biosensors and Bioelectronics*, 2011, **26**, 2890-2896.
10. Y. Wang, X. He, K. Wang and X. Ni, *Biosensors and Bioelectronics*, 2010, **25**, 2101-2106.
11. H.-Z. He, V. P.-Y. Ma, K.-H. Leung, D. S.-H. Chan, H. Yang, Z. Cheng, C.-H. Leung and D.-L. Ma, *Analyst*, 2012, **137**, 1538-1540.
12. X. He, Z. Li, X. Jia, K. Wang and J. Yin, *Talanta*, 2013, **111**, 105-110.
13. M. von Papen, S. Gambaryan, C. Schuetz and J. Geiger, *Transfusion Medicine and Hemotherapy*, 2013, **40**, 109-116.
14. F. Liu, J. Zhang, R. Chen, L. Chen and L. Deng, *Chemistry & biodiversity*, 2011, **8**, 311-316.
15. Y. Liang, C. Wu, G. Figueroa-Miranda, A. Offenhäusser, D. Mayer, *Biosensors and Bioelectronics*, 2019, **144**, 111668.