Key Issues Facing Electrospun Carbon Nanofibers in Energy Applications: On-

going Approaches and Challenges

Guangdi Nie,^{a,b} Xinwei Zhao,^a Yaxue Luan,^a Jiangmin Jiang,^b Zongkui Kou^{b,*} and John Wang^{b,*}

^aIndustrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing,

Qingdao University, Qingdao, 266071, P. R. China

^bDepartment of Materials Science and Engineering, National University of Singapore, Singapore,

117574, Singapore

**Corresponding author:*

E-mail: msekz@nus.edu.sg; msewangj@nus.edu.sg

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
PCNFs	PAN + PVP + Co(NO ₃) ₂ + DMF	Catalytic graphitization + Inorganic and organic template	$S_{BET} = 468.9 \text{ m}^2 \text{ g}^{-1}$	0.5 M H ₂ SO ₄	104.5 F g ⁻¹ at 0.2 A g ⁻¹	3.22 Wh kg ⁻¹ at 600 W kg ⁻¹	94.0% after 2000 cycles	29
CNF280@700	PAN + PVP + DMF	Tailoring thermal treatment temperature + Organic template	$\begin{split} S_{BET} &= 230.4 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.156 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.102 \text{ cm}^3 \text{ g}^{-1} \end{split}$	2 М КОН	155.0 F g ⁻¹ at 0.5 A g ⁻¹	7.78 Wh kg ⁻¹ at 400 W kg ⁻¹	91.0% after 5000 cycles	39
HPCNFs	PAN + CaCO ₃ + DMF/THF	Catalytic graphitization + Inorganic template	$\begin{split} S_{BET} &= 679.0 \ m^2 \ g^{\text{-1}}, \\ V_{\text{total}} &= 0.410 \ \text{cm}^3 \ g^{\text{-1}} \end{split}$	6 М КОН	251.0 F g ⁻¹ at 0.5 A g ⁻¹	-	88.0% after 5000 cycles	44
Graphene- beaded CNFs	PAN + oxidized graphene + DMF	Integration with graphene + Physical activation by air	_	6 М КОН	263.7 F g ⁻¹ at 0.1 A g ⁻¹	-	86.9% after 2000 cycles	48
CNF/graphene composites	PAN + DMF + GO (ultrasonic spray)	Integration with graphene	$\begin{split} S_{BET} &= 480.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.240 \text{ cm}^3 \text{ g}^{-1}, \\ \sigma &= 65.9 \text{ S cm}^{-1} \end{split}$	6 М КОН	183.0 F g ⁻¹ at 1.0 A g ⁻¹	_	92.0% after 4500 cycles	49
CNF/graphene composites	PAN + GO + DMF	Integration with graphene	$\begin{split} S_{BET} &= 555.97 \text{ m}^2 \text{ g}^{\text{-1}}, \\ V_{total} &= 0.350 \text{ cm}^3 \text{ g}^{\text{-1}}, \\ V_{micro} &= 0.266 \text{ cm}^3 \text{ g}^{\text{-1}}, \\ \sigma &= 13.41 \text{ S cm}^{\text{-1}} \end{split}$	6 М КОН	146.6 F g ⁻¹ at 1.0 mA cm ⁻²	19.44 Wh kg ⁻¹ at 400 W kg ⁻¹	_	50
CNF/graphene composites	PAN + PVP + graphene	Integration with graphene + Organic template	$\begin{split} S_{BET} &= 627.0 \ m^2 \ g^{-1}, \\ V_{total} &= 0.350 \ cm^3 \ g^{-1} \end{split}$	6 М КОН	265.0 F g ⁻¹ at 0.001 A g ⁻¹	-	-	51

Table S1. Summary of the activation methods and electrochemical performance of the electrospun CNFs as supercapacitor electrodes.

Matariala	Decourses and additions	A attraction matheda	Surface area, pores,	Flootnolyto	Specific	Energy/Power	Cyclic	Def
Materials	r recursors and additives	Activation methods	and conductivity	Electrolyte	capacitance	density	Stability	Kel.
CNFs/rGO	PAN + GO/PMMA + DMF	Integration with graphene +	-	6 M KOH	140.1 F g ⁻¹ at	_	96.2% after	53
		Organic template			1.0 A g ⁻¹		1000 cycles	
CNF/graphene	Phenolic resin + GO/PVA	Integration with graphene +	$S_{BET} = 767.0 \text{ m}^2 \text{ g}^{-1},$	6 М КОН	279.1 F g ⁻¹ at	_	100% after	54
composites	+ water	Organic template	$V_{total} = 0.370 \text{ cm}^3 \text{ g}^{-1}$		0.2 A g ⁻¹		5000 cycles	
CNFs/CNTs	PVA + MWCNTs + SDS +	Integration with CNTs +	$S_{BET} = 350.0 \text{ m}^2 \text{ g}^{-1},$	1 M H ₂ SO ₄	170.0 F g ⁻¹ at 10	-	_	55
	starch + p -toluenesulfonic	Organic template + Physical	$V_{total} = 0.310 \text{ cm}^3 \text{ g}^{-1},$		mV s ⁻¹			
	acid + water	activation by air	$\sigma = 2.1 \text{ S cm}^{-1}$					
CNFs/CNTs	CA + MWCNTs + DMAc	Integration with CNTs +	$S_{BET} = 1120.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	160.0 F g ⁻¹ at	-	94.0% after	56
	+ acetone	Physical activation by steam	$\sigma = 12.55 \text{ S cm}^{-1}$		0.5 A g ⁻¹		1000 cycles	
CNFs/CNTs	PAN + CNTs/maleic	Integration with CNTs +	$\sigma = 2.2 \text{ S cm}^{-1}$	$1 \text{ M H}_2 \text{SO}_4$	382.0 F g ⁻¹ at	_	93.2% after	57
	anhydride + DMF	Organic template			1.0 A g ⁻¹		1000 cycles	
CNFs/rGO/CNT	PAN + GO + MWCNTs +	Integration with graphene and	$S_{BET} = 175.1 \text{ m}^2 \text{ g}^{-1},$	0.5 M Na ₂ SO ₄	120.5 F g ⁻¹ at	_	109% after	58
S	DMF	CNTs	$V_{total} = 0.156 \text{ cm}^3 \text{ g}^{-1}$		0.5 A g ⁻¹		5000 cycles	
CNFs/carbon	PVP + modified carbon	Integration with carbon black	$S_{BET} = 548.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	166.0 F g ⁻¹ at	_	_	59
black	black + ethanol		$V_{total} = 0.374 \text{ cm}^3 \text{ g}^{-1},$		0.1 A g ⁻¹			
			$V_{micro} = 0.144 \text{ cm}^3 \text{ g}^{-1}$					
CNFs/ACNWs	PAN-derived CNFs +	Graphitization + Integration	$S_{BET} = 421.8 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	176.5 F g ⁻¹ at	24.5 Wh kg ⁻¹ at	100% after	60
	PANi coating	with PANi-derived carbon +	$V_{total} = 0.390 \text{ cm}^3 \text{ g}^{-1}$		0.5 A g ⁻¹	250 W kg ⁻¹	10000 cycles	
		Chemical activation by KOH						

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
CNFs/CNTs	PAN + MWCNTs + DMF	Integration with CNTs + Activation by a steam mixture	$S_{BET} = 810.0 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 0.294 \text{ cm}^3 \text{ g}^{-1},$	1 M H ₂ SO ₄	310.0 F g ⁻¹ at 0.1 A g ⁻¹	-	97.0% after 1000 cycles	61
		of hydroperoxide and water	$V_{micro} = 0.135 \text{ cm}^3 \text{ g}^{-1},$ $\sigma = 5.32 \text{ S cm}^{-1}$					
CNF/graphene composite paper	Phenolic nanofibers + GO (vacuum-assisted filtration)	Integration with graphene	$\sigma = 7.6 \ S \ cm^{-1}$	6 M KOH	112.0 F cm ⁻³ at 0.5 A g ⁻¹	_	-	62
CNF aerogels	Pre-oxidized PAN fibers + GO (freeze-drying)	Integration with graphene	$S_{BET} = 57.8 \text{ m}^2 \text{ g}^{-1}$	6 М КОН	180.0 F g ⁻¹ at 1.0 A g ⁻¹	_	94.8% after 2000 cycles	64
CNTs on CNFs	Pre-oxidized PAN/PVP/Ni(Ac) ₂ + PVP	Integration with CNTs + Chemical activation by KOH + Catalytic graphitization + Organic template	$S_{BET} = 950.0 \text{ m}^2 \text{ g}^{-1}$	EMIMBF₄ ionic liquid	146.8 F g ⁻¹ at 0.5 A g ⁻¹	70.7 Wh kg ⁻¹ at 614.4 W kg ⁻¹	97.0% after 20000 cycles	65
CNTs on CNFs	CA-derived CNFs + CNT growth (CVD)	Integration with CNTs + Chemical activation by KOH	$\begin{split} S_{BET} &= 1211.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.530 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.390 \text{ cm}^3 \text{ g}^{-1} \end{split}$	6 М КОН	149.0 F g ⁻¹ at 0.5 A g ⁻¹	_	90.0% after 1000 cycles	66
CNF/rGO/rGO paper	PAN/GO/DMF (electrospinning) + GO (spraying)	Integration with graphene + Physical activation by air	$\begin{split} S_{BET} &= 523.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.320 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.170 \text{ cm}^3 \text{ g}^{-1} \end{split}$	6 М КОН	241.0 F g ⁻¹ at 0.2 A g ⁻¹	-	100% after 2000 cycles	67
HPCNFs	PAN + SiO ₂ + DMF	Inorganic template + Chemical activation by KOH	$\begin{split} S_{BET} &= 1632.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 1.530 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.600 \text{ cm}^3 \text{ g}^{-1} \end{split}$	1 M H ₂ SO ₄	197.0 F g ⁻¹ at 5 mV s ⁻¹	-	_	70

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
Mesoporous	$PAN + SiO_2 + DMF$	Inorganic template	$S_{BET} = 496.5 \text{ m}^2 \text{ g}^{-1},$	$1 \text{ M H}_2 \text{SO}_4$	247.8 F g ⁻¹ at	9.9 Wh kg ⁻¹ at	88.9% after	71
CNFs			$V_{total} = 1.490 \text{ cm}^3 \text{ g}^{-1},$		1.0 A g ⁻¹	690 W kg ⁻¹	5000 cycles	
			$V_{micro} = 0.581 \text{ cm}^3 \text{ g}^{-1}$					
Nitrogen-doped	$PAN + PVP + SiO_2 + DMF$	Inorganic and organic template	$S_{BET} = 57.0 \text{ m}^2 \text{ g}^{-1},$	1 M H ₂ SO ₄	242.0 F g ⁻¹ at	_	99.0% after	72
PCNFs		+ Nitrogen doping	$V_{total} = 0.260 \text{ cm}^3 \text{ g}^{-1}$		0.2 A g ⁻¹		5000 cycles	
Bubbled CNFs	$PAN + SiO_2 + DMF$	Inorganic template	$S_{BET} = 593.2 \text{ m}^2 \text{ g}^{-1},$	1 M H ₂ SO ₄	287.0 F g ⁻¹ at	_	90.6% after	73
			$V_{total} = 0.109 \text{ cm}^3 \text{ g}^{-1}$		0.4 A g ⁻¹		500 cycles	
Bubbled PCNFs	ZnO nanofibers + ethanol	Inorganic template	$S_{BET} = 588.0 \text{ m}^2 \text{ g}^{-1}$	1 M H ₂ SO ₄	150.0 F g ⁻¹ at	_	94.1% after	74
					0.5 A g ⁻¹		35000 cycles	
Inner PCNFs	SnO ₂ /Fe ₂ O ₃ nanofibers +	Inorganic template	$S_{BET} = 967.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	328.0 F g ⁻¹ at	13.6 Wh kg ⁻¹ at	73.0% after	75
	PDA		$V_{total} = 1.560 \text{ cm}^3 \text{ g}^{-1}$		1.0 A g ⁻¹	500 W kg ⁻¹	5000 cycles	
CNFs	PAN + NaCl + DMF	Inorganic template	$S_{BET} = 24.0 \text{ m}^2 \text{ g}^{-1},$	1 M H ₂ SO ₄	204.0 F g ⁻¹ at	_	>100% after	76
			$V_{total} = 0.017 \text{ cm}^3 \text{ g}^{-1}$		0.5 A g ⁻¹		1000 cycles	
Nitrogen-rich	PAN/PVP nanofibers +	Inorganic and organic template	$S_{BET} = 726.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	293.0 F g ⁻¹ at	_	95.7% after	77
HPCNFs	$H_2O + KCl/K_2CO_3$	+ Nitrogen doping	$V_{total} = 0.510 \text{ cm}^3 \text{ g}^{-1}$		0.2 A g ⁻¹		1000 cycles	
HPCNFs	$PAN + K_2S + DMF$	Inorganic template	$S_{BET} = 835.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	210.7 F g ⁻¹ at	27.2 Wh kg ⁻¹ at	89.0% after	78
			$V_{total} = 0.678 \text{ cm}^3 \text{ g}^{-1},$		0.2 A g ⁻¹	508.7 W kg ⁻¹	10000 cycles	
			$V_{micro} = 0.387 \text{ cm}^3 \text{ g}^{-1}$					
Ribbon-shaped	Phenolic resin + PVP +	Catalytic graphitization +	$S_{BET} = 463.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	228.0 F g ⁻¹ at	_	95.0% after	81
CNFs	$Co(NO_3)_2$ + ethanol	Inorganic and organic template	$V_{total} = 0.575 \text{ cm}^3 \text{ g}^{-1}$		0.2 A g ⁻¹		5000 cycles	

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
PCNFs	Pre-oxidized PI/PVP fibers + Mg(NO ₃) ₂	Inorganic and organic template	$S_{BET} = 1836 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 0.880 \text{ cm}^3 \text{ g}^{-1}$	1 M LiPF ₆	140.0 F g ⁻¹ at 0.1 A g ⁻¹	30.0 Wh kg ⁻¹ at 25 W kg ⁻¹	91.0% after 3000 cycles	82
HPCNFs	Lignin + PVP + Mg(NO ₃) ₂ + DMF	Inorganic and organic template	$\begin{split} S_{BET} &= 1140 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.627 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.137 \text{ cm}^3 \text{ g}^{-1} \end{split}$	6 М КОН	248.0 F g ⁻¹ at 0.2 A g ⁻¹	_	97.0% after 1000 cycles	83
Nitrogen-doped PCNFs	PAN + Mg(OH) ₂ + DMF	Inorganic template + Nitrogen doping	$\begin{split} S_{BET} &= 926.4 \ m^2 \ g^{\text{-1}}, \\ V_{\text{total}} &= 0.420 \ \text{cm}^3 \ g^{\text{-1}} \end{split}$	6 M KOH	327.3 F g ⁻¹ at 1.0 A g ⁻¹	42.5 Wh kg ⁻¹ at 500 W kg ⁻¹	93.0% after 10000 cycles	84
Activated PCNFs	PAN/PVP/DMF (shell) + PVP/SnCl ₂ /DMF (core)	Inorganic and organic template	$\begin{split} S_{BET} &= 1082 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.649 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.422 \text{ cm}^3 \text{ g}^{-1} \end{split}$	0.5 M H ₂ SO ₄	289.0 F g ⁻¹ at 10 mV s ⁻¹	14.4 Wh kg ⁻¹ at 80 W kg ⁻¹	~100% after 10000 cycles	85
Oxygen/nitrogen co-doped PCNFs	PAN + SnCl ₂ + DMF	Inorganic template + Oxygen/nitrogen <i>co</i> -doping	$\begin{split} S_{BET} &= 772.7 \ m^2 \ g^{-1}, \\ V_{total} &= 0.470 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.300 \ cm^3 \ g^{-1} \end{split}$	6 М КОН	233.1 F g ⁻¹ at 0.2 A g ⁻¹	5.14 Wh kg ⁻¹ at 100 W kg ⁻¹	~100% after 10000 cycles	86
PCNFs	PAN + ZnCl ₂ + DMF	Inorganic template	$\begin{split} S_{BET} &= 550.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.340 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.260 \text{ cm}^3 \text{ g}^{-1}, \\ \sigma &= 1.39 \text{ S cm}^{-1} \end{split}$	6 М КОН	140.0 F g ⁻¹ at 5 mV s ⁻¹	_	_	87
PCNFs	$PAN + CA + ZnCl_2 +$ DMAc + acetone	Inorganic and organic template	$\begin{split} S_{BET} &= 887.0 \ m^2 \ g^{-1}, \\ V_{total} &= 0.410 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.320 \ cm^3 \ g^{-1} \end{split}$	6 М КОН	280.0 F g ⁻¹ at 0.1 A g ⁻¹	_	96.8% after 2000 cycles	88

M . 4 1 .	D		Surface area, pores,		Specific	Energy/Power	Cyclic	D.C
Waterials	Precursors and additives	Activation methods	and conductivity	Electrolyte	capacitance	density	Stability	Kei.
Cross-linked	$PAN + ZnCl_2 + DMF$	Inorganic template	$S_{BET} = 520.0 \text{ m}^2 \text{ g}^{-1}, \sigma$	6 M KOH	163.0 F g ⁻¹ at	3.04 Wh kg ⁻¹ at	97.3% after	89
PCNFs			$= 2.33 \text{ S cm}^{-1}$		1.0 A g ⁻¹	15000 W kg ⁻¹	60000 cycles	
Bamboo-like	PAN + TEOS + DMF	Organic template	$S_{BET} = 1912 \text{ m}^2 \text{ g}^{-1},$	3 М КОН	236.0 F g ⁻¹ at	2.37 Wh kg ⁻¹ at	96.0% after	90
graphitic CNFs			$V_{total} = 2.270 \text{ cm}^3 \text{ g}^{-1}$		5.0 A g ⁻¹	61300 W kg ⁻¹	10000 cycles	
HPCNFs	PAN + PMMA + TEOS +	Organic template	$S_{BET} = 698.9 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	170.0 F g ⁻¹ at	7.20 Wh kg ⁻¹ at	94.2% after	91
	DMF		$V_{total} = 0.212 \text{ cm}^3 \text{ g}^{-1},$		1.0 A g ⁻¹	7500 W kg ⁻¹	8000 cycles	
			$V_{micro} = 0.196 \text{ cm}^3 \text{ g}^{-1}$					
Double-capillary	PVP/TEOS/ethanol/acetic	Organic template	$S_{BET} = 870.0 \text{ m}^2 \text{ g}^{-1}$,	EMIMBF ₄	245.0 F g ⁻¹ at	56.6 Wh kg ⁻¹ at	94.0% after	92
CNFs	acid (outer) +		$V_{total} = 0.720 \text{ cm}^3 \text{ g}^{-1}$	ionic liquid	0.5 A g ⁻¹	1760 W kg ⁻¹	10000 cycles	
	Lignin/PEO/DMF (inner)							
PCNFs	PVP + PFA + TEOS + HCl	Organic template	$S_{BET} = 897.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	205.5 F g ⁻¹ at 20	_	97.0% after	93
	+ pluronic F127 + ethanol		$V_{total} = 0.723 \text{ cm}^3 \text{ g}^{-1}$		mV s ⁻¹		1500 cycles	
Porous carbon	PVP + resin + TEOS + HCl	Organic template	$S_{BET} = 2092 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	252.0 F g ⁻¹ at	_	97.0% after	94
microfibers	+ pluronic P123 + ethanol		$V_{total} = 1.370 \text{ cm}^3 \text{ g}^{-1}$		0.5 A g ⁻¹		4000 cycles	
Nitrogen-doped	PAN + PMMA + TEOS +	Organic template + Nitrogen	$S_{BET} = 1126 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	207.0 F g ⁻¹ at	_	99.0% after	95
PCNFs	TPU + DMF	doping	$V_{total} = 0.424 \text{ cm}^3 \text{ g}^{-1}$		0.2 A g ⁻¹		8000 cycles	
PCNFs	PVP + resin + TEOS + HCl	Organic template	$S_{BET} = 1674 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	210.0 F g ⁻¹ at	-	_	96
	+ pluronic F127 + ethanol		$V_{total} = 1.414 \text{ cm}^3 \text{ g}^{-1},$		0.5 A g ⁻¹			
			$V_{micro} = 0.508 \text{ cm}^3 \text{ g}^{-1}$					

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
Activated PCNFs	$PAN + Cu(Ac)_2 + DMF$	Organic template	$S_{BET} = 395.6 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 0.242 \text{ cm}^3 \text{ g}^{-1},$ $V_{micro} = 0.149 \text{ cm}^3 \text{ g}^{-1}$	3 М КОН	183.3 F g ⁻¹ at 1.0 A g ⁻¹	_	_	98
Nitrogen-doped HPCNFs	$PAN + Mg(Ac)_2 + DMF$	Organic template + Nitrogen doping	$\begin{split} S_{BET} &= 684.3 \ m^2 \ g^{-1}, \\ V_{total} &= 0.560 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.260 \ cm^3 \ g^{-1} \end{split}$	6 M KOH	263.0 F g ⁻¹ at 1.0 A g ⁻¹	9.15 Wh kg ⁻¹ at 500 W kg ⁻¹	94.2% after 10000 cycles	101
Nitrogen-doped HPCNFs	PAN + ZIF-8 + DMF	Organic template + Nitrogen doping	$\begin{split} S_{BET} &= 417.9 \ m^2 \ g^{-1}, \\ V_{total} &= 0.680 \ cm^3 \ g^{-1} \end{split}$	$2 \text{ M H}_2 \text{SO}_4$	307.2 F g ⁻¹ at 1.0 A g ⁻¹	10.96 Wh kg ⁻¹ at 250 W kg ⁻¹	98.2% after 10000 cycles	102
Mesoporous CNFs	PVA + tin-citric aqueous solution + Triton X-100	Organic template	$\begin{split} S_{BET} &= 800.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.600 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.170 \text{ cm}^3 \text{ g}^{-1} \end{split}$	6 М КОН	103.0 F g ⁻¹ at 1.0 A g ⁻¹	5.10 Wh kg ⁻¹ at 242.2 W kg ⁻¹	~100% after 4250 cycles	104
Nitrogen-doped HPCNFs	PAN + ZIF-8 + DMF	Organic template + Nitrogen doping	$S_{BET} = 314.7 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 0.330 \text{ cm}^3 \text{ g}^{-1}$	1 M H ₂ SO ₄	332.0 F g ⁻¹ at 1.0 A g ⁻¹	-	98.9% after 5000 cycles	105
Nitrogen-doped HPCNFs	PAN + ZIF-8 + DMF	Organic template + Nitrogen doping	$\begin{split} S_{BET} &= 559.6 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.789 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.137 \text{ cm}^3 \text{ g}^{-1} \end{split}$	6 M KOH	302.0 F g ⁻¹ at 0.5 A g ⁻¹	_	84.0% after 12000 cycles	106
Boron/nitrogen <i>co</i> -doped PCNFs	PAN/ZIF-8 fibers treated by NaBH4 and NH4HB4O7	Organic template + Boron/nitrogen <i>co</i> -doping	$S_{BET} = 351.5 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 1.789 \text{ cm}^3 \text{ g}^{-1}$	2 М КОН	295.0 F g ⁻¹ at 0.5 A g ⁻¹	-	94.5% after 10000 cycles	107
Sulfur/nitrogen <i>co-</i> doped PCNFs	PAN + ZIF-67 + thiourea + DMF	Organic template + Sulfur/nitrogen <i>co</i> -doping	$S_{BET} = 512.0 \text{ m}^2 \text{ g}^{-1},$ $V_{micro} = 0.220 \text{ cm}^3 \text{ g}^{-1}$	$1 \text{ M H}_2 \text{SO}_4$	396.0 F g ⁻¹ at 1.0 A g ⁻¹	14.3 Wh kg ⁻¹ at 250 W kg ⁻¹	107% after 3000 cycles	108

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
Nitrogen-doped	PAN nanofibers + ZIF-8	Organic template + Nitrogen	$S_{BET} = 277.2 \text{ m}^2 \text{ g}^{-1}$	1 M H ₂ SO ₄	387.3 F g ⁻¹ at	7.9 Wh kg ⁻¹ at	90.0% after	109
HPCNFs	(polarity-assisted growth)	doping			1.0 A g ⁻¹	219 W kg ⁻¹	10000 cycles	
PCNFs	PAN/IAA/DMF (outer) +	Organic template	$S_{BET} = 563.0 \text{ m}^2 \text{ g}^{-1},$	$1 \text{ M H}_2\text{SO}_4$	272.7 F g ⁻¹ at	11.1 Wh kg ⁻¹ at	96.7% after	110
	PAN/DMF (inner)		$V_{micro} = 0.240 \text{ cm}^3 \text{ g}^{-1}$		1.0 A g ⁻¹	250 W kg ⁻¹	3000 cycles	
Nitrogen-doped	PAN + PVP + DMF	Organic template + Nitrogen	$S_{BET} = 452.5 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	198.0 F g ⁻¹ at	_	104.8% after	113
PCNFs		doping	$V_{total} = 0.210 \text{ cm}^3 \text{ g}^{-1}$		1.0 A g ⁻¹		5000 cycles	
Fluorine/nitrogen	PAN/PVP fibers + water +	Organic template +	$S_{BET} = 596.1 \text{ m}^2 \text{ g}^{-1}$	$1 \text{ M H}_2 \text{SO}_4$	252.6 F g ⁻¹ at	8.07 Wh kg ⁻¹ at	92.0% after	114
co-doped PCNFs	Carbonization + Vacuum plasma treatment by C_4F_8	Fluorine/nitrogen co-doping			0.5 A g ⁻¹	248 W kg ⁻¹	20000 cycles	
PCNFs	PAN/PVP fibers + water	Organic template + Physical	$S_{BET} = 1232 \text{ m}^2 \text{ g}^{-1}$,	6 M KOH	202.0 F g ⁻¹ at 2	_	100% after	115
		activation by CO ₂	$V_{total} = 0.786 \text{ cm}^3 \text{ g}^{-1},$		mV s ⁻¹		10000 cycles	
			$V_{micro} = 0.441 \text{ cm}^3 \text{ g}^{-1}$					
Nitrogen-doped	PAN (outer)/PVP (inner)	Organic template + Nitrogen	$S_{BET} = 619.0 \text{ m}^2 \text{ g}^{-1},$	$1 \text{ M H}_2\text{SO}_4$	421.0 F g ⁻¹ at	8.4 Wh kg ⁻¹ at	98.0% after	117
arch CNFs	fibers + water	doping	$V_{total} = 0.659 \text{ cm}^3 \text{ g}^{-1},$ $\sigma = 4.50 \text{ S cm}^{-1}$		0.5 A g ⁻¹	50 W kg ⁻¹	5000 cycles	
Microporous	PAN/PVP fibers + water	Organic template	-	2 М КОН	200.0 F g ⁻¹ at	_	93.0% after	119
CNFs					0.5 A g ⁻¹		1000 cycles	
Nitrogen-doped	PAN (outer)/PVP (inner)	Organic template + Nitrogen	$S_{BET} = 701.0 \text{ m}^2 \text{ g}^{-1}$,	6 M KOH	197.0 F g ⁻¹ at	_	98.6% after	120
hollow CNFs	fibers + water	doping by NH ₃ activation	$V_{total} = 0.497 \text{ cm}^3 \text{ g}^{-1}$		0.2 A g ⁻¹		1000 cycles	

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
Mesoporous	PAN + PMMA + graphene	Organic template + Integration	$S_{BET} = 551.3 \text{ m}^2 \text{ g}^{-1}, \sigma$	6 M KOH	~160.0 F g ⁻¹ at 1	21.4 Wh kg ⁻¹ at	83.0% after	121
CNFs	+ DMF	with graphene	$= 1.16 \text{ S cm}^{-1}$		mA cm ⁻²	400 W kg ⁻¹	100 cycles	
Hollow PCNFs	PAN/PMMA/DMF (outer)	Organic template + Chemical	$S_{BET} = 1753.9 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	191.3 F g ⁻¹ at 2	_	91.0% after	122
	+ PMMA/DMF (inner)	activation by KOH	$V_{total} = 2.150 \text{ cm}^3 \text{ g}^{-1}$		mV s ⁻¹		4000 cycles	
PCNFs	PAN + PMMA + DMF	Organic template	$S_{BET} = 683.5 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	140.8 F g ⁻¹ at	19.5 Wh kg ⁻¹ at	95.4% after	123
			$V_{total} = 0.241 \text{ cm}^3 \text{ g}^{-1}$		0.5 A g ⁻¹	250 W kg ⁻¹	10000 cycles	
PCNFs	PAN + PMMA + DMF	Organic template + Physical	$S_{BET} = 2419 \text{ m}^2 \text{ g}^{-1},$	EMITFSI	140.2 F g ⁻¹ at 10	67.4 Wh kg ⁻¹ at	85.0% after	124
		activation by CO ₂	$V_{total} = 1.313 \text{ cm}^3 \text{ g}^{-1},$	ionic liquid	mV s ⁻¹	1715 W kg ⁻¹	1000 cycles	
			$V_{micro} = 0.638 \text{ cm}^3 \text{ g}^{-1}$					
Ultrathin CNFs	PAN + PMMA + DMF	Organic template	$S_{BET} = 620.0 \text{ m}^2 \text{ g}^{-1},$	$1 \text{ M H}_2 \text{SO}_4$	243.0 F g ⁻¹ at	_	100.5% after	125
			$V_{total} = 0.403 \text{ cm}^3 \text{ g}^{-1},$		1.0 A g ⁻¹		1000 cycles	
			$V_{micro} = 0.217 \text{ cm}^3 \text{ g}^{-1}$					
Hollowed multi-	PAN/l-PMMA/DMF (shell)	Organic template	$S_{BET} = 549.2 \text{ m}^2 \text{ g}^{-1},$	1 M H ₂ SO ₄	129.0 F g ⁻¹ at 2	_	~82.0% after	126
channel CNFs	+ h-PMMA/DMF (core)		$V_{total} = 0.463 \text{ cm}^3 \text{ g}^{-1}$		mV s ⁻¹		1000 cycles	
Multi-channel	PAN + PS + DMF	Organic template	$S_{BET} = 750.0 \text{ m}^2 \text{ g}^{-1}$	6 M KOH	270.0 F g ⁻¹ at	9.0 Wh kg ⁻¹ at	~100% after	127
CNFs					0.5 A g ⁻¹	120 W kg ⁻¹	5000 cycles	
Nitrogen-doped	PAN + PS + DMF	Organic template + Nitrogen	$S_{BET} = 840.8 \text{ m}^2 \text{ g}^{-1},$	1 M H ₂ SO ₄	461.0 F g ⁻¹ at	11.2 Wh kg ⁻¹ at	92.6% after	128
multi-channel		doping	$V_{total} = 0.462 \text{ cm}^3 \text{ g}^{-1},$		0.25 A g ⁻¹	118.7 W kg ⁻¹	50000 cycles	
PCNFs			$V_{micro} = 0.250 \text{ cm}^3 \text{ g}^{-1}$					

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
Activated PCNFs	PAN + CA + DMF	Organic template + Physical activation by steam	$S_{BET} = 1160 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 0.807 \text{ cm}^3 \text{ g}^{-1},$ $\sigma = 7.50 \text{ S cm}^{-1}$	6 М КОН	245.0 F g ⁻¹ at 1 mA cm ⁻²	-	95.9% after 1000 cycles	130
Interconnected PCNFs	PAN + PSF + DMF	Organic template	$\begin{split} S_{BET} &= 687.0 \ m^2 \ g^{-1}, \\ V_{total} &= 0.520 \ cm^3 \ g^{-1}, \\ \sigma &= 13.85 \ S \ cm^{-1} \end{split}$	6 М КОН	257.0 F g ⁻¹ at 0.25 A g ⁻¹	36.0 Wh kg ⁻¹ at 125 W kg ⁻¹	100% after 6000 cycles	131
Nitrogen-doped PCNFs	PAN + APEG + DMF	Organic template + Nitrogen doping	$S_{BET} = 753.0 \text{ m}^2 \text{ g}^{-1}$	6 М КОН	302.0 F g ⁻¹ at 0.2 A g ⁻¹	10.5 Wh kg ⁻¹ at 50 W kg ⁻¹	94.6% after 2000 cycles	133
PCNFs	PAN/DMF + pitch/THF	Organic template	$\begin{split} S_{BET} &= 966.3 \ m^2 \ g^{-1}, \\ V_{total} &= 0.379 \ cm^3 \ g^{-1}, \\ \sigma &= 3.96 \ S \ cm^{-1} \end{split}$	6 М КОН	130.7 F g ⁻¹ at 1 mA cm ⁻²	15.0 Wh kg ⁻¹ at 400 W kg ⁻¹	_	134
Nitrogen-doped PCNFs	PAN + PmAP + DMSO	Organic template + Nitrogen doping	$\begin{split} S_{BET} &= 1031.4 \ m^2 \ g^{-1}, \\ V_{total} &= 1.343 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.708 \ cm^3 \ g^{-1} \end{split}$	6 М КОН	347.5 F g ⁻¹ at 0.5 mA cm ⁻²	12.1 Wh kg ⁻¹ at 93 W kg ⁻¹	90.5% after 10000 cycles	135
Activated PCNFs	PAN + Nafion + DMF	Organic template + Chemical activation by KOH	$S_{BET} = 2282 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 1.240 \text{ cm}^3 \text{ g}^{-1}$	Sol-gel/ionic liquid	144.0 F g ⁻¹ at 0.5 A g ⁻¹	61.0 Wh kg ⁻¹ (5 mV s ⁻¹)	_	137
Microporous CNFs	PVP + PMDA + ODA + DMF	Organic template	$\begin{split} S_{BET} &= 804.0 \ m^2 \ g^{-1}, \\ V_{total} &= 0.344 \ cm^3 \ g^{-1} \end{split}$	6 М КОН	215.0 F g ⁻¹ at 0.2 A g ⁻¹	7.5 Wh kg ⁻¹ at 50 W kg ⁻¹	92.0% after 1000 cycles	139
Nitrogen-doped HPCNFs	PAN + PMMA + TPU + DMF	Organic template + Nitrogen doping	$S_{BET} = 2216.8 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 1.443 \text{ cm}^3 \text{ g}^{-1}$	6 M KOH	255.0 F g ⁻¹ at 0.2 A g ⁻¹	-	~100% after 8000 cycles	140

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
Mesoporous	PAN + PAA-b-PAN-b-	Organic template	$S_{BET} = 249.8 \text{ m}^2 \text{ g}^{-1},$	4 M KOH	256.3 F g ⁻¹ at	3.1 Wh kg ⁻¹ at	90.0% after	141
CNFs	PAA + DMAc		$V_{total} = 0.186 \text{ cm}^3 \text{ g}^{-1},$		0.5 A g ⁻¹	~250 W kg ⁻¹	80000 cycles	
			$V_{micro} = 0.097 \text{ cm}^3 \text{ g}^{-1}$					
Mesoporous	PAN + poly(ST-co-DVB-	Organic template + Integration	$S_{BET} = 535.0 \text{ m}^2 \text{ g}^{-1},$	$1 \text{ M H}_2\text{SO}_4$	262.0 F g ⁻¹ at	-	_	142
CNFs	co-NaSS) +NWCNTs +	with CNTs	$V_{total} = 0.437 \text{ cm}^3 \text{ g}^{-1},$		0.2 A g ⁻¹			
	DMF		$\sigma = 2.36 \text{ S cm}^{-1}$					
PCNFs	PAN + POSS + DMF	Organic template + Chemical	$S_{BET} = 335.4 \text{ m}^2 \text{ g}^{-1},$	PVA/H ₃ PO ₄	138.7 F g ⁻¹ at	12.2 Wh kg ⁻¹ at	~100% after	143
		activation by KOH	$V_{total} = 0.330 \text{ cm}^3 \text{ g}^{-1},$	gel	0.2 A g ⁻¹	79.6 W kg ⁻¹	1000 cycles	
			$V_{micro} = 0.040 \text{ cm}^3 \text{ g}^{-1}$					
PCNFs	PAN + lignin + DMF	Organic template	$S_{BET} = 675.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	216.8 F g ⁻¹ at	_	88.8% after	144
			$V_{total} = 0.290 \text{ cm}^3 \text{ g}^{-1},$		1.0 A g ⁻¹		2000 cycles	
			$V_{micro} = 0.240 \text{ cm}^3 \text{ g}^{-1}$					
Microporous	Phenolic resin/PVA +	Organic template + Chemical	$S_{BET} = 597.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	256.0 F g ⁻¹ at	_	95.0% after	145
CNFs	$KOH + H_2O$	activation by KOH	$V_{total} = 0.270 \text{ cm}^3 \text{ g}^{-1},$		0.2 A g ⁻¹		1000 cycles	
			$V_{micro} = 0.260 \text{ cm}^3 \text{ g}^{-1}$					
PCNFs	Lignin + PVA + H_2O	Organic template	$S_{BET} = 583.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	64.0 F g ⁻¹ at 0.4	5.67 Wh kg ⁻¹ at	90.0% after	146
			$V_{total} = 0.289 \text{ cm}^3 \text{ g}^{-1}$		A g ⁻¹	94.2 W kg ⁻¹	6000 cycles	
PCNFs	Acid treated coal + PVA +	Organic template	$S_{BET} = 691.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	170.0 F g ⁻¹ at	_	~105% after	147
	SDBS +H ₂ O		$V_{total} = 0.526 \text{ cm}^3 \text{ g}^{-1},$		1.0 A g ⁻¹		20000 cycles	
			$V_{micro} = 0.226 \text{ cm}^3 \text{ g}^{-1}$					

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
Hollow CNFs	PAN/PMMA/DMF (shell) + PMMA/DMF (core)	Organic template	$S_{BET} = 812.6 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 0.946 \text{ cm}^3 \text{ g}^{-1},$	6 М КОН	192.0 F g ⁻¹ at 0.5 A g ⁻¹	26.7 Wh kg ⁻¹ at 249.9 W kg ⁻¹	~80.0% after 3000 cycles	148
PCNFs	PBI + PLLA + DMAc + NMP	Organic template + Activation by NH ₃	$V_{micro} = 0.282 \text{ cm}^3 \text{ g}^{-1}$ $S_{BET} = 1114 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 0.606 \text{ cm}^3 \text{ g}^{-1},$ $V_{micro} = 0.443 \text{ cm}^3 \text{ g}^{-1}$	EMITFSI ionic liquid	111.9 F g ⁻¹	36.9 Wh kg ⁻¹ at 700 W kg ⁻¹	-	149
PCNFs	PAN + high-amylose starch + DMSO	Organic template	$\begin{split} S_{BET} &= 637.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.420 \text{ cm}^3 \text{ g}^{-1}, \\ \sigma &= 9.32 \text{ S cm}^{-1} \end{split}$	6 М КОН	282.0 F g ⁻¹ at 1.0 A g ⁻¹	9.1 Wh kg ⁻¹	~100% after 10000 cycles	151
Hollow PCNFs	PMDA/ODA/PVP/DMF (shell) + SAN/DMF (core)	Organic template	_	6 М КОН	221.0 F g ⁻¹ at 0.2 A g ⁻¹	_	95.0% after 5000 cycles	152
Cross-linked HPCNFs	PAN + TPA + DMF	Organic template	$S_{BET} = 1144 \text{ m}^2 \text{ g}^{-1}$	1 M H ₂ SO ₄	257.6 F g ⁻¹ at 0.5 A g ⁻¹	10.18 Wh kg ⁻¹	95.0% after 20000 cycles	153
Cross-linked PCNFs	PAN + melamine + DMF	Organic template	$S_{BET} = 428.0 \text{ m}^2 \text{ g}^{-1}$	6 М КОН	194.0 F g ⁻¹ at 0.05 A g ⁻¹	_	99.2% after 1000 cycles	154
PCNFs	P(AN-co-IA) + DMF	Organic template	$\begin{split} S_{BET} &= 1427 \ m^2 \ g^{-1}, \\ V_{total} &= 0.782 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.442 \ cm^3 \ g^{-1} \end{split}$	EMITFSI ionic liquid	92.9 F g ⁻¹ at 10 mV s ⁻¹	45.9 Wh kg ⁻¹ at 1700 W kg ⁻¹	77.0% after 2500 cycles	155
Cross-linked NCNFs	PAN + PVP + TPA + DMF	Organic template + Nitrogen doping	$S_{BET} = 582.0 \text{ m}^2 \text{ g}^{-1}, \sigma$ = 19.0 S cm ⁻¹	1 M H ₂ SO ₄	223.8 F g ⁻¹ at 0.5 A g ⁻¹	5.9 Wh kg ⁻¹ at 1200 W kg ⁻¹	106% after 20000 cycles	156

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
Ultrafine hollow	PAN/PVP (shell)/silicone	Organic template + Chemical	$S_{BET} = 1120.3 \text{ m}^2 \text{ g}^{-1},$	Organic	231.6 F g ⁻¹	11.2 Wh kg ⁻¹ at	_	157
PCNFs	oil (core) fibers + water	activation by KOH	$V_{total} = 0.307 \text{ cm}^3 \text{ g}^{-1}$	electrolyte		15131.2 W kg ⁻¹		
Mesoporous	Phenolic resin + pluronic	Inorganic and organic template	$S_{BET} = 674.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	270.0 F g ⁻¹ at	-	95.0% after	158
CNFs	$F127 + Mg(NO_3)_2 + PVP +$		$V_{total} = 0.880 \text{ cm}^3 \text{ g}^{-1},$		0.2 A g ⁻¹		5000 cycles	
	ethanol		$V_{micro} = 0.045 \text{ cm}^3 \text{ g}^{-1},$					
			$\sigma = 1.2 \text{ S cm}^{-1}$					
PCNFs	PBI + 6FDD + DMAc	Organic template + Physical	$S_{BET} = 3010 \text{ m}^2 \text{ g}^{-1},$	Ionic liquid	142.8 F g ⁻¹ at 10	67.5 Wh kg ⁻¹ at	86.3% after	162
		activation by CO ₂	$V_{total} = 1.608 \text{ cm}^3 \text{ g}^{-1},$		mV s ⁻¹	1713.8 W kg ⁻¹	1000 cycles	
			$V_{micro} = 0.921 \text{ cm}^3 \text{ g}^{-1}$					
Interconnected	PAN + oxidized coal +	Organic template + Physical	$S_{BET} = 877.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	259.7 F g ⁻¹ at	_	135.5% after	163
CNFs	DMF	activation by CO ₂	$V_{total} = 0.354 \text{ cm}^3 \text{ g}^{-1},$		1.0 A g ⁻¹		7000 cycles	
			$V_{micro} = 0.308 \text{ cm}^3 \text{ g}^{-1}$					
Mesoporous	PAN + lignin + DMF	Organic template + Physical	$S_{BET} = 2543 \text{ m}^2 \text{ g}^{-1},$	Ionic liquid	128.0 F g ⁻¹ at 10	50.0 Wh kg ⁻¹ at	75.0% after	164
CNFs		activation by CO ₂	$V_{micro} = 0.547 \text{ cm}^3 \text{ g}^{-1},$		mV s ⁻¹	15000 W kg ⁻¹	1000 cycles	
			$\sigma = 5.3 \text{ S cm}^{-1}$					
Inter-bonded	CA nanofibers + hydrolysis	Physical activation by CO ₂	$S_{BET} = 520.0 \text{ m}^2 \text{ g}^{-1},$	6 M KOH	241.4 F g ⁻¹ at	4.2 Wh kg ⁻¹ at	99.9% after	165
CNFs			$V_{total} = 0.300 \text{ cm}^3 \text{ g}^{-1}$		1.0 A g ⁻¹	12500 W kg ⁻¹	10000 cycles	
Aligned ACNFs	PAN + DMF	Physical activation by CO ₂	$S_{BET} = 1097 \text{ m}^2 \text{ g}^{-1},$	1 M H ₂ SO ₄	230.0 F g ⁻¹ at 10	_	96.5% after	167
C			$V_{total} = 0.620 \text{ cm}^3 \text{ g}^{-1},$		mV s ⁻¹		1000 cycles	
			$V_{micro} = 0.240 \text{ cm}^3 \text{ g}^{-1},$					
			$\sigma = 1.42$ S cm ⁻¹					

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
ACNFs	PAN + DMF	Physical activation by steam	$S_{BET} = 1230 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 0.550 \text{ cm}^3 \text{ g}^{-1}$	30 wt.% KOH	173.0 F g ⁻¹ at 0.01 A g ⁻¹	_	_	168
ACNFs	PBI + DMAc	Physical activation by steam	$\begin{split} S_{BET} &= 1220 \ m^2 \ g^{-1}, \\ V_{micro} &= 0.710 \ cm^3 \ g^{-1} \end{split}$	1 M H ₂ SO ₄	202.0 F g ⁻¹ at 1 mA cm ⁻²	_	-	169
ACNFs	PMDA + ODA + THF + methanol	Physical activation by steam	$S_{BET} = 1453 \text{ m}^2 \text{ g}^{-1},$ $V_{micro} = 0.563 \text{ cm}^3 \text{ g}^{-1}$	30 wt.% KOH	175.0 F g ⁻¹ at 0.02 A g ⁻¹	_	-	172
ACNFs	PIM-1 + tetrachloroethane	Physical activation by steam	$\begin{split} S_{BET} &= 1162 \ m^2 \ g^{-1}, \\ V_{total} &= 0.611 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.469 \ cm^3 \ g^{-1} \end{split}$	Ionic liquid	149.0 F g ⁻¹ at 1.0 A g ⁻¹	60.0 Wh kg ⁻¹ at 1715 W kg ⁻¹	_	173
ACNFs	PAN + acid treated coal + DMF	Organic template + Physical activation by steam	$\begin{split} S_{BET} &= 902.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.405 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.352 \text{ cm}^3 \text{ g}^{-1} \end{split}$	6 М КОН	230.0 F g ⁻¹ at 1.0 A g ⁻¹	-	97.0% after 1000 cycles	174
Activated PCNFs	PAN + DMF	Chemical activation by KOH	$\begin{split} S_{BET} &= 1886 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 1.196 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.940 \text{ cm}^3 \text{ g}^{-1} \end{split}$	1 M Na ₂ SO ₄	103.0 F g ⁻¹ at 1.0 A g ⁻¹	-	94.0% after 3000 cycles	177
CNF aerogels	Pre-oxidized PAN fibers + PAA-TEA (freeze-drying)	Organic template + Chemical activation by KOH	_	6 М КОН	307.2 F g ⁻¹ at 2 mV s ⁻¹	_	96.3% after 5000 cycles	178
Activated PCNFs	Phenolic resin + PVA + H ₂ O	Organic template + Chemical activation by KOH	$\begin{split} S_{BET} &= 1317 \; m^2 \; g^{\text{-1}}, \\ V_{total} &= 0.699 \; cm^3 \; g^{\text{-1}}, \\ V_{micro} &= 0.540 \; cm^3 \; g^{\text{-1}} \end{split}$	6 М КОН	362.0 F g ⁻¹ at 0.2 A g ⁻¹	7.1 Wh kg ⁻¹ at 90 W kg ⁻¹	98.0% after 1000 cycles	179

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
ACNFs	PAN + carbonized wheat straw + DMF	Integration with biomass carbon + Chemical activation by KOH	_	6 M KOH	249.0 F g ⁻¹ at 0.4 A g ⁻¹	_	96.4% after 1000 cycles	180
ACNFs	PAN + H ₃ PO ₄ + DMF	Chemical activation by H ₃ PO ₄	$\begin{split} S_{BET} &= 709.0 \ m^2 \ g^{-1}, \\ V_{total} &= 0.356 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.278 \ cm^3 \ g^{-1} \end{split}$	6 М КОН	156.0 F g ⁻¹ at 0.5 A g ⁻¹	21.46 Wh kg ⁻¹ at 500 W kg ⁻¹	96.5% after 1000 cycles	181
Activated PCNFs	CA + DMAc + acetone	Chemical activation by ZnCl ₂	$\begin{split} S_{BET} &= 1188 \ m^2 \ g^{\text{-1}}, \\ V_{total} &= 0.575 \ cm^3 \ g^{\text{-1}}, \\ V_{micro} &= 0.406 \ cm^3 \ g^{\text{-1}} \end{split}$	6 М КОН	202.0 F g ⁻¹ at 0.1 A g ⁻¹	-	92.0% after 5000 cycles	182
NCNFs	PVP-derived CNFs + g - C ₃ N ₄	Nitrogen doping	$S_{BET} = 309.0 \text{ m}^2 \text{ g}^{-1}$	1 M H ₂ SO ₄	264.4 F g ⁻¹ at 1.0 A g ⁻¹	_	>100% after 5000 cycles	192
Mesoporous NCNFs	$PAN + g-C_3N_4 + DMF$	Nitrogen doping + Physical activation by steam	$\begin{split} S_{BET} &= 554.0 \ m^2 \ g^{\text{-1}}, \\ V_{total} &= 0.900 \ cm^3 \ g^{\text{-1}} \end{split}$	2 M Li ₂ SO ₄	220.0 F g ⁻¹ at 0.2 A g ⁻¹	12.5 Wh kg ⁻¹ at 72 W kg ⁻¹	97.0% after 1000 cycles	193
NCNFs	Regenerated cellulose fibers + NH ₄ Cl	Nitrogen doping	$S_{BET} = 29.0 \text{ m}^2 \text{ g}^{-1}, \sigma$ = 10.2 S cm ⁻¹	1 M KOH	26.0 F g ⁻¹	_	138.3% after 1000 cycles	195
NCNFs	Regenerated cellulose fibers + PPy coating	Nitrogen doping + Physical activation by CO ₂	$\begin{split} S_{BET} &= 281.8 \ m^2 \ g^{\text{-1}}, \\ V_{\text{total}} &= 0.187 \ cm^3 \ g^{\text{-1}} \end{split}$	6 M KOH	236.0 F g ⁻¹ at 0.2 A g ⁻¹	_	98.0% after 10000 cycles	197
Nitrogen-doped PCNFs	PAN fibers + PANi coating	Nitrogen doping	$\begin{split} S_{BET} &= 410.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.209 \text{ cm}^3 \text{ g}^{-1} \end{split}$	1 M H ₂ SO ₄	335.0 F g ⁻¹ at 0.5 A g ⁻¹	9.2 Wh kg ⁻¹ at 250 W kg ⁻¹	86.0% after 10000 cycles	198
NCNFs	PAN fibers + bPEI coating	Nitrogen doping	-	3 М КОН	192.5 F g ⁻¹ at 1.0 A g ⁻¹	8.0 Wh kg ⁻¹ at 300 W kg ⁻¹	84.5% after 1000 cycles	200

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
NCNFs	Pre-oxidized PAN fibers (carbonization in NH ₃)	Nitrogen doping	-	1 M Na ₂ SO ₄	_	29.1 Wh kg ⁻¹ at 450 W kg ⁻¹	93.7% after 5000 cycles	201
NCNFs	Phenolic resin/PVA- derived CNFs (NH ₃ treatment)	Organic template + Nitrogen doping	$\begin{split} S_{BET} &= 763.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.360 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.280 \text{ cm}^3 \text{ g}^{-1}, \\ \sigma &= 0.833 \text{ S cm}^{-1} \end{split}$	6 M KOH	251.2 F g ⁻¹ at 0.1 A g ⁻¹	21.7 Wh kg ⁻¹ at 10000 W kg ⁻¹	99.0% after 2000 cycles	203
Boron/nitrogen co-doped PCNFs	PAN + H ₃ BO ₃ + urea + DMF	Boron/nitrogen <i>co</i> -doping	$\begin{split} S_{BET} &= 560.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.270 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.186 \text{ cm}^3 \text{ g}^{-1} \end{split}$	6 М КОН	180.0 F g ⁻¹ at 1 mA cm ⁻²	23.5 Wh kg ⁻¹ at 400 W kg ⁻¹	_	207
Oxygen/nitrogen co-doped PCNFs	PAN/PVP fibers + water (HNO ₃ activation)	Organic template + Oxygen/nitrogen <i>co</i> -doping	$\begin{split} S_{BET} &= 692.0 \ m^2 \ g^{-1}, \\ V_{total} &= 0.450 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.252 \ cm^3 \ g^{-1} \end{split}$	6 М КОН	207.0 F g ⁻¹ at 0.2 A g ⁻¹	24.8 Wh kg ⁻¹ at 349 W kg ⁻¹	91.0% after 3000 cycles	208
Oxygen/nitrogen co-doped CNFs	PAN + DMF (HNO ₃ oxidation)	Oxygen/nitrogen co-doping	$\begin{split} S_{BET} &= 165.0 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.117 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.073 \text{ cm}^3 \text{ g}^{-1} \end{split}$	2 М КОН	365.0 F g ⁻¹ at 2 mV s ⁻¹	-	~100% after 2000 cycles	209
Oxygen/nitrogen <i>co-</i> doped CNFs	PAN + DMF (microwave- assisted oxidation)	Oxygen/nitrogen co-doping	$\begin{split} S_{BET} &= 670.0 \ m^2 \ g^{-1}, \\ V_{total} &= 0.534 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.397 \ cm^3 \ g^{-1} \end{split}$	1 M H ₂ SO ₄	338.0 F g ⁻¹ at 1.0 A g ⁻¹	46.9 Wh kg ⁻¹ at 10000 W kg ⁻¹	98.0% after 10000 cycles	210
Oxygen/nitrogen <i>co-</i> doped CNFs	PAN + DMF (plasma oxidation)	Oxygen/nitrogen co-doping	$\begin{split} S_{BET} &= 274.0 \ m^2 \ g^{-1}, \\ V_{total} &= 0.181 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.099 \ cm^3 \ g^{-1} \end{split}$	2 М КОН	377.0 F g ⁻¹ at 2 mV s ⁻¹	-	~120% after 2000 cycles	212

Materials	Precursors and additives	Activation methods	Surface area, pores, and conductivity	Electrolyte	Specific capacitance	Energy/Power density	Cyclic Stability	Ref.
N/P <i>co</i> -doped CNFs	$PAN + H_3PO_4 + DMF$	Phosphorus/nitrogen co-doping	$S_{BET} = 12.15 \text{ m}^2 \text{ g}^{-1}$	1 M H ₂ SO ₄	224.9 F g ⁻¹ at 0.5 A g ⁻¹	_	105.2% after 8000 cycles	216
N/P <i>co-</i> doped CNFs	PAN + PEG + PPA + DMF	Organic template + Phosphorus/nitrogen <i>co</i> -doping	$\begin{split} S_{BET} &= 462.8 \ m^2 \ g^{-1}, \\ V_{total} &= 0.250 \ cm^3 \ g^{-1}, \\ V_{micro} &= 0.150 \ cm^3 \ g^{-1} \end{split}$	1 M H ₂ SO ₄	228.7 F g ⁻¹ at 0.5 A g ⁻¹	_	107.5% after 5000 cycles	217
Sulfur/nitrogen <i>co-</i> doped CNFs	PAN + lignin + graphene + DMF	Organic template + Integration with graphene + Sulfur/nitrogen <i>co</i> -doping + Chemical activation by KOH	$S_{BET} = 2439 \text{ m}^2 \text{ g}^{-1},$ $V_{total} = 1.288 \text{ cm}^3 \text{ g}^{-1}$	6 М КОН	267.3 F g ⁻¹ at 5 mV s ⁻¹	9.28 Wh kg ⁻¹ at 493 W kg ⁻¹	96.7% after 5000 cycles	220
B-F-N triply doped PCNFs	$PVA + PTFE + H_3BO_3 + H_2O$ (carbonization in N_2)	Boron/fluorine/nitrogen <i>co</i> - doping + Organic template	$\begin{split} S_{BET} &= 633.6 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 0.540 \text{ cm}^3 \text{ g}^{-1} \end{split}$	1 M LiPF ₆	163.6 F g ⁻¹ at 5 mV s ⁻¹	42.77 Wh kg ⁻¹ at 1750 W kg ⁻¹	88.5% after 9000 cycles	223
Reinforced CNFs	PAN + graphene QDs + DMF	Integration with graphene + Chemical activation by KOH	$\begin{split} S_{BET} &= 2032 \text{ m}^2 \text{ g}^{-1}, \\ V_{total} &= 1.091 \text{ cm}^3 \text{ g}^{-1}, \\ V_{micro} &= 0.550 \text{ cm}^3 \text{ g}^{-1}, \\ \sigma &= 0.650 \text{ S cm}^{-1} \end{split}$	6 М КОН	358.4 F g ⁻¹ at 1.0 A g ⁻¹	3.73 Wh kg ⁻¹ at 34020 W kg ⁻¹	~100% after 10000 cycles	245

PCNFs: porous CNFs, HPCNFs: hierarchical PCNFs, ACNFs: activated CNFs, NCNFs: nitrogen-doped CNFs, S_{BET} : BET specific suface area, V_{total} : total pore volume, V_{micro} : micropore volume, σ : conductivity, THF: tetrahydrofuran, rGO: reduced graphene oxide, SDS: sodium dodecyl sulfate, MWCNTs: Multiwalled carbon nanotubes, DMAc: dimethylacetamide, CVD: chemical vapor deposition, PFA: poly(furfuryl alcohol), C_4F_8 : octafluorocyclobutane, l-PMMA: low-molecular weight PMMA, h-PMMA: high-molecular weight PMMA, PMDA: pyromellitic dianhydride, ODA: 4,4'-oxydianiline, PAA-b-PAN-b-PAA: polyacrylic acid-*b*-

polyacrylonitrile-*b*-polyacrylic acid, poly(ST-co-DVB-co-NaSS): poly(styrene-*co*-divinylbenzene-*co*-styrene sulfonate), POSS: polyhedral oligomeric silsesquioxane, SDBS: sodium dodecyl benzene sulfonate, PLLA: poly-L-lactic acid, NMP: 1-methyl-2-pyrrolidinone, DMSO: dimethyl sulfone, SAN: styrene-acrylonitrile copolymer, P(AN-*co*-IA): poly(acrylonitrile-co-itaconic acid), PAA-TEA: poly(amide acid)-triethylamine salt, EMIMBF₄: 1-ethyl-3-methylimidazolium tetrafluoroborate, EMITFSI: ethylmethylimidazolium bis (trifluoromethylsulfonyl) imide.