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Magnetic field of [001] and [111] uniformly magnetised cubes

Magnetic nanoparticles can have complex coupling involving both dipolar and exchange in-

teractions. The atomic exchange interaction is relevant up to a length scale of 10nm.1 Thus,

dipolar coupling dominates in the formation of the structures on the length scales 10nm-

100µm, with many potential applications.2–6 Due to shape anisotropy, small single domain

magnets behave like uniaxial magnets. We characterize the system using dipole-dipole inter-

action potential: it is assumed that each particle carries identical dipolar (magnetic) moment

with magnitude M0 = msd
3 where ms is the magnetization and d the size of the cube. The

analytic expressions for the magnetic field, of a sphere or an infinite cylinder, are part of

classical magneto-static textbook.

For complex geometries we need to employ numerical solvers. Still, solution for bar mag-

net, deduced from the Maxwell equations can be also obtained analytically. For a magnetic
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bar magnetized along the y−axis, i.e., [010]7 one finds:

B[010]
x (x, y, z) =

µ0

4π
M0

2∑
k,l,m=1

log[z + (−1)mzb + Aklmsq ] (1)

B[010]
y (x, y, z) = −µ0

4π
M0

2∑
k,l,m=1

[y + (−1)lyb][x+ (−1)kxb]

|y + (−1)lyb||x+ (−1)kxb|
arctan{|x+ (−1)kxb|[z + (−1)mzb]

|y + (−1)lyb|Aklmsq

}

(2)

B[010]
z (x, y, z) =

µ0

4π
M0

2∑
k,l,m=1

log[x+ (−1)kxb + Aklmsq ] (3)

where Aklmsq =
√

[x+ (−1)kxb]2 + [y + (−1)lyb]2 + [z + (−1)mzb]2.

For a bar magnetized along the x−axis, it is sufficient to rotate the system as fol-

low: B
[100]
x (x, y, z) = B

[010]
z (−y, x, z), B

[100]
y (x, y, z) = −B[010]

x (−y, x, z), and B
[100]
z (x, y, z) =

B
[010]
y (−y, x, z), and for a bar magnetized along the z−axis, B

[001]
x (x, y, z) = B

[010]
x (x, z,−y),

B
[001]
y (x, y, z) = −B[010]

z (x, z,−y), B
[001]
z (x, y, z) = B

[010]
y (x, z,−y). Finally, the magnetic field

of a cube (xb = yb = zb) magnetized along the principal diagonal (i.e., [111]), is the sum of

the previous expressions, ~B[111] = ( ~B[100] + ~B[010] + ~B[001])/
√

3.

Particle and square assembly

In order to gain a good understanding of dipolar interactions within an assembly of magnetic

nanocubes, we will consider three relevant cases: (a) chain, (b) 5x5 square and (c) 5x5x5

cube. The chain, square, and super-cube have all anti-ferromagnetic order corresponding to

their respective ground state configuration. We probe energy landscape experienced by a

single [111] magnetised cube moving on top of these structures. An oscillatory chess-board

landscape is reported here giving rise to alternating longitudinal attraction/repulsion upon

shifting the cube. Thereby, the periodicity is essentially dictated by the cube size.

In more detail, the lowest energy is obtained for the front-right corner, see fig. S1. Then,

upon shifting the cube away from the corner the cohesive energy at minimum is increasing.

This first global minimum has similar depth in all three considered cases and, it is important

2



to note, the cubes centre of the mass is above the centre of the cube below. This latter point

will be used in building the minimisation strategy described below. The alignment of the

centres of the mass leads to the rectangular form of the minimal energy objects.

Figure S1: Energy landscape one uniformly [111] magnetised cube experiences over an as-
sembly of magnetic cubes in ground state.

Analytic energy calculations

One way to obtain the state with lowest value is to calculate all possible magnetic configu-

rations and geometrical configurations. This is also instructive since it gives also idea about

energy differences between different states and especially between ground state and the first

exited states. For 2 ≤ N ≤ 8, we extensively surveyed the energies of all possible config-

urations and generated a database of energies. We visualised the obtained configuration’s

energy in terms of a geometric configuration in Fig. S2). The configuration are sorted and
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indexed (x-axis) from lowest to highest energy for each geometric configuration separately.

The energies are sorted in increasing order (on the abscissa is arbitrary index of the config-

uration), while the ordinate corresponds to the magnetic energy for a given configuration.

The energies for different geometric configurations are given. The red curves in Fig. S2

correspond to the global geometric configuration, which is also a global minima for a given

number of cubes. A linear chain structure (blue curve) is also found at higher energy for

N ≥ 3. The N = 5 is the first three dimensional ground state and also show two dimensional

configuration (green curve). The number of possible magnetic configurations increases with

8N scaling law so, with our computational resources, we follow this calculations up to N ≤ 8.

In case of pure 40 nm1 single-crystal magnetite cube and Ms = 160 kA/m, cf. Ref.8

Small single-domain magnets are treated like uniaxial magnets. Their interaction is described

through dipole-dipole interaction potential: it is assumed that each particle carries identical

dipolar (magnetic) moment with magnitude M0 = Msd
3. We consider the two most common

magnetisation directions: alongside [001] or along the principal diagonal [111] of the cube.

Magnetic nanoparticles can have complex coupling involving both dipolar and exchange

interactions. The reference magnetic interaction energy υ = µ0M
2
0/4πd

3 was estimated to

be υ = 1 eV.

Discrete dipole model for interaction of magnetic cubes

The previous analytic formula in Eq. 1-3 is applicable for the analytical analysis of dipolar

interaction of cubes, but it is not practical for large number of particles (N > 16) and

numeric optimization. We constructed a model which combines numerical precision with

computational efficiency. The cubes are modelled as a cluster of hard spheres filling a

cubical frame. A magnetic cube with side d is represented with nine spheres; a big sphere

in the centre with radius d/2 and eight smaller spheres touching the inner corners of the

cube. A cube, represented using a potential energy of interaction U(~rij) between pairs of

1We chose the cube’s dimensions to facilitate comparison both with real units used in experiment and
scaled used in generic theoretical considerations.
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Figure S2: Energy profile showing the energy of all possible magnetic states for nanocubes
magnetised along the principal diagonal [111] of the cube. The geometric configuration
with lowest energy is represented in red. The configuration are sorted and indexed (x-axis)
according to their energy to facilitate visualisation of the data. The energies are given in
electron-volts, i.e., the reference magnetic energy is υ = 1 eV.

Figure S3: (a) Uniformly [001] magnetized magnetic cube, (b) nine dipole model for [001]
magnetized cube, (c) uniformly [111] magnetized magnetic cube, (d) nine dipole model for
[111] magnetized cube, and (e) mechanical contact model representation of the cube. Top
(upper row) and side (lower row) view are given for comparison.
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the point-like dipoles with the sphere centres located at ~ri and ~rj, can be written as:

Um(~rij) =
µ0

4π

[
~mi · ~mj

r3ij
− 3

(~mi · ~rij)(~mj · ~rij)
r5ij

]
, (4)

where rij = |~rij| = |~rj−~ri|, and i, j = 1 ·9. In this model, the magnetic moment (mi) carry a

fraction of the total magnetic moment and it is expressed as mi = Isvi, where vi is the volume

of the magnetic part of the particle. The volume of the central particle is v1 = π/6 and the

volume of the smaller particles located at the corners is v2...9 = π(2−
√

3)3/6. The magnetic

density, which insures same energy between uniformly magnetised cubes placed on top of

each other (minimal energy configuration) as in the case of uniformly magnetised cubes, is

Is ≈ 2.1 ·M0/d
3. This magnetic density is independent of the investigated magnetisation

directions, i.e., [001] and [111].

Using nine dipoles, we consider the interaction of the cube corners, which was not taken

into account in the previously used models.9 The main difference is observed in the position

of the second maximum when the c.m. of one particle is on the corner of the other, see

Fig. S6. While in single dipole model9 the secondary peak (i.e., head-tail minimum) lies at

∆1
xy/
√

2d ≈ 0.39, in our nine dipole model is at ∆9
xy/
√

2d ≈ 0.45, significantly closer to the

result for a uniformly magnetized cube ∆unif
xy /
√

2d = 1/2. The position of the secondary peak

is important since it provides flexibility to the chain movement, i.e., particle at the corner

can easily flip over the side to a similar energy state. Thereby, the total potential energy

related to the magnetic interaction of two particles, with indices α, β in a given structure

U tot
m , is given by a sum over pairs of dipoles:

Uαβ
m =

∑
i,j=1..9
i>j

Um(~rαβij ). (5)
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Figure S4: Comparison of the interaction energy of two uniformly magnetised cubes consid-
ering a nine-dipole and a single-dipole models.9 The minimal energy for different positions
along the diagonal of the cube are shown.

Genetic algorithm for minimisation (N > 16)

In numerical part of the work (i.e., Fig. 5 and 6), the reduced potential energy of interaction

UN has been minimised by evolving transient configurations on a square lattice using genetic

algorithm.10 In order to increase the chance of finding the ground state, we typically employ

many independent populations of about 100 initial configurations consisting of individual

particle position and magnetisation written in a so called genome of individual (i.e., indi-

vidual configuration). If the particle is present or not on certain position on 3d lattice was

registered with 1 or 0, respectively in corresponding part of genome. Also in other part of

genome magnetisation of the particles is mapped on an array of 0-7 corresponding to eight

possible magnetisation pointing from centre to one of the eight corners of the cube.

The evolution starts from a population of randomly generated individuals (i.e., configura-

tions), and consists of an iterative process of creation of new generations. In each generation,

the potential energy of interaction Utot is evaluated for each individual in the population.

The prime difference to usual deterministic minimisation procedures is that multiple indi-
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viduals evolve in each step in a stochastic manner: A number of the best configurations are

selected from the current population and modified (recombined and randomly mutated) to

form the new generation. The algorithm terminates when a prescribed maximum number

of generations has been produced and no more improvement of the best individual(s) is

achieved.

Figure S5: (a) nine dipole model for surface short-ranged repulsion/attraction interaction,
and (b) contact potential model.

Discrete model for short-range surface interaction of cubes

Here we introduce surface repulsion or attraction model used in molecular dynamics simu-

lations. It is a practical short-ranged model to be used for large number of particles and

numeric optimisation. We constructed a model which is compatible with previously intro-

duced nine dipole model, i.e., the cube is modelled as a cluster of hard spheres filling a

cubical frame. The surface interaction is separated in two independent components (a) sur-

face interaction proportional to contact area which can be attractive and repulsive and (b)

contact interaction which is purely repulsive and prevents cubes from crossing each-other.

Just like in the nine dipole model, the contact area dependent surface interaction is

modelled by replacing a cube with side d with nine spheres: a big sphere in the centre with

radius d/2 and eight smaller spheres touching the inner corners of the cube, see Fig. S5a. A

surface energy, represented using a potential energy of interaction eS(~rij) between pairs of

the point-like dipoles with the sphere centres located at ~ri and ~rj. We have chosen Yukawa
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potential form, written as:

eS(~rij) =
ε

d
sisj

eκr/d

r
(6)

where ε, κ are energy and length parameters and i, j = 1 · 9. The length parameter is set to

κ = 5. In this model, every sphere models interaction with a fraction of the total surface it

represents, i.e., si = πd2i , di = 1/2, (2−
√

3)d/2.

Figure S6: Comparison of the interaction energy of repulsive cubes considering a nine par-
ticles interacting with Yukawa potential form and repulsion proportional to contact surface.
The energy profile of two systems is shown for displacement of centre of mass of two cubes
along cube’s edge ∆x and face diagonal ∆xy directions.

The energy profiles of contact area dependent repulsive surface interaction (ε > 0) are

compared with analytic calculations surface energy proportional to the contact surface in

Fig. S6.

The contact potential of the cubes is represented by four overlapping spheres per edge

with diameter radii (2 −
√

3)d/2, having a total of 32 spheres, and the central sphere with

radius d/2, see Fig. S5b. These, in fact, cuboids are rigid bodies with fixed distances between

spheres. This model is mainly chosen to prevent the geometric cube overlaps while at the

same time creating a smooth and incommensurate surfaces allowing smooth gliding of one
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cube over the other. The incommensurability is important since it prevents the system to

mechanically lock in commensurable states and enables smooth gliding of one cube over the

other. We describe the effect of isotropic contact interaction between the spherical particles

using a minimal model, i.e., representing them by the soft-core beads. The spheres therefore

interact isotropically by means of truncated at minima rcut = 21/6σ and shifted Lennard-

Jones potential, also known as Weeks-Chandler-Andersen (WCA) potential. The interaction

is defined as: U cut
LJ (r) = ULJ(r) − ULJ(rcut), r < rcut and Ucut = 0, r ≥ rcut, where rcut is the

distance at which the potential is truncated, and ULJ(r) is the conventional Lennard-Jones

(LJ) potential, i.e., ULJ(r) = −4ε[(σ/r)12 − (σ/r)6]. The parameter ε corresponds to the

energy scale of the interaction and σ is related to the characteristic diameter of the spheres

δ. i.e., σ = δ/21/6 and δ/d = 1 and (2−
√

3)d for large and small spheres respectively. The

value of the sphere repulsive contact potential is taken εr = 7 · 10−16J for particles with the

same d = 25nm size of the cube (i.e., εr = 800Uαβ
m ).

Evolution of energy with temperature

Fig. S7 and S7 gives the calculated dependence of the intra-particle energy on the tempera-

ture. The intra-particle energy term includes magnetic and short-range surface interaction.

In case of pure 80 nm and Ms = 18 kA/m, cf. Ref.,11 the reference magnetic interaction

energy υ = µ0M
2
0/4πd

3 is estimated to be υ = 1 eV which corresponds to 12000K reference

temperature. The results are material and scale independent, the reference energy and tem-

perature depend on particle size. For d = 25 nm is referent temperature is υ = 30 meV and

temperature 320K.
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Figure S7: Increase of potential energy including magnetic and short-range surface interac-
tion with temperature used to track the structural changes for a super-cube consisting of 216
nanocubes with [111] magnetisation. The results are shown for different repulsive surface
couplings.

Figure S8: Increase of potential energy including magnetic and short-range surface interac-
tion with temperature used to track the structural changes for a super-rod consisting of 128
nanocubes with [001] magnetisation. The results are shown for different repulsive surface
couplings.
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