Two Dimension ZIF-derived Ultra-thin Cu-N/C Nanosheets as High-Performance Oxygen Reduction Electrocatalysts for High-Performance Zn-Air Batteries

Yi Guan, Nan Li, Yongliang Li*, Lingna Sun, Yuan Gao*, Qianling Zhang, Chuanxin

He, Jianhong Liu, Xiangzhong Ren*

Department of College of Chemistry and Environmental Engineering, Shenzhen
University, Shenzhen, Guangdong 518060, P.R. China

*Corresponding author.

E-mail address: renxz@szu.edu.cn; liyli@szu.edu.cn; szgaoy311@163.com

Synthesis of ZIF-PHS

Cu/Zn ZIF-UNS was synthesized as fellows: $Zn(Ac)_2$ and $Cu(NO_3)_2 \cdot 3H_2O$ were dissolved in 40 mL of deionized water with the molar ratios of $Zn^{2+}/Co^{2+} = 2:1$, denoted as solution A. The 2-mIm and PVP was added to the same amount of deionized water denoted as solution B. Solution A and solution B are mixed and placed in a 60 ° water bath for 3 h with vigorously stirring. The reacted solution was then stirred at room temperature for 12 h. The detailed amount of metal salt and the corresponding ZIF-UNS products are listed in Table S1. The product was collected by

repeated centrifugation (8000 rpm, 15 min) and washed with deionized water for 4 times, and then dried in an oven at 60 °C overnight.

Table S1. The relationship diagram of the amounts of metal salt and the obtained products.

$Cu(NO_3)_2 \cdot 3H_2O(mmol)$	Zn(Ac) ₂ (mmol)	2-mIm(mmol)	PVP(g)	The product
2	4	16	0.5	Cu-N-UNS-1:2
3	3	16	0.5	Cu-N-UNS-1:1
4	2	16	0.5	Cu-N-UNS-2:1
5	1	16	0.5	Cu-N-UNS-5:1

Synthesis of Cu/Zn ZIF-UNS-L

 $Zn(Ac)_2$ and $Cu(NO_3)_2 \cdot 3H_2O$ were dissolved in 40 mL of deionized water with the molar ratios of $Zn^{2+}/Co^{2+} = 2:1$, denoted as solution A. The 2-mIm and PVP was added to the same amount of deionized water denoted as solution B. Solution A and solution B are mixed and stirred at room temperature for 15 h. The product was collected by repeated centrifugation (8000 rpm, 15 min) and washed with deionized water for 4 times, and then dried in an oven at 60 °C overnight.

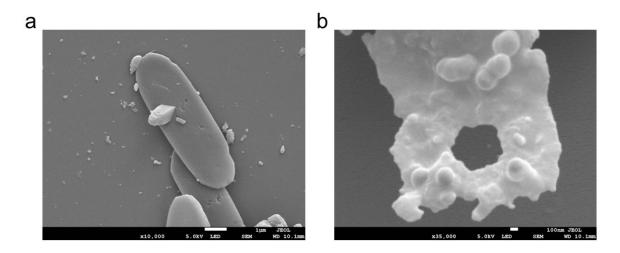


Fig. S1. SEM images of the (a) Cu/Zn ZIF-UNS-L and its product Cu/N-UNS (b).

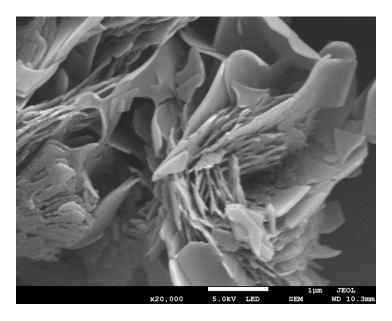


Fig. S2. SEM image of Cu/Zn ZIF-UNS after 3 hours water bath

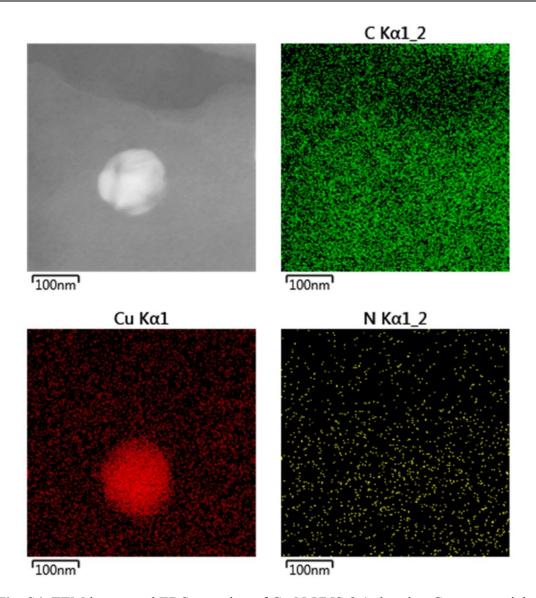



Fig. S3. SEM image of Cu-N-UNS-5:1.

Fig. S4. TEM image and EDS mapping of Cu-N-UNS-2:1 showing Cu nanoparticles evenly distributed in the ultra-thin carbon micro-sheets.

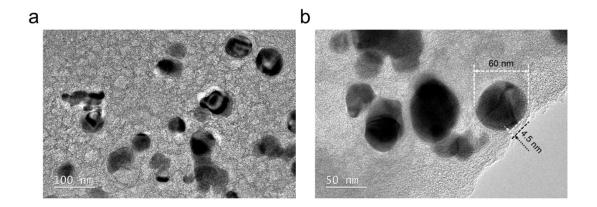


Fig. S5. TEM images of Cu-N-UNS-1:1.

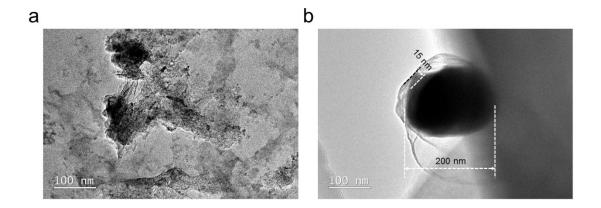
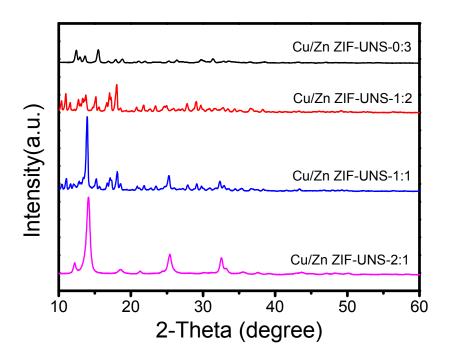
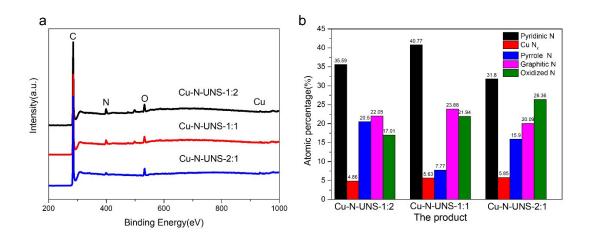
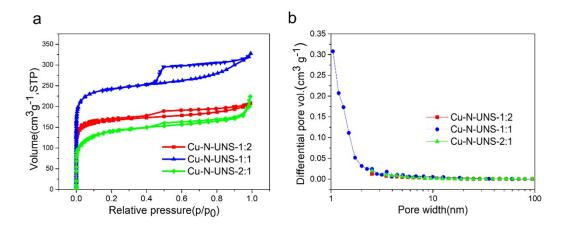


Fig. S6. TEM images of Cu-N-UNS-1:2.


Fig. S7. XRD patterns of Cu/Zn ZIF-UNS samples.

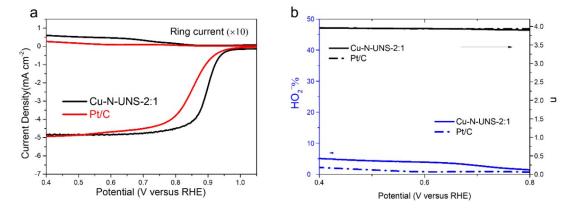

Fig. S8. XPS spectra (a) of different products derived from various precursors; and elemental composition (b) (atomic percentage) obtained from XPS analysis.

Table S2. Atomic ratios of Cu:N:C of the catalysts obtained from XPS analysis

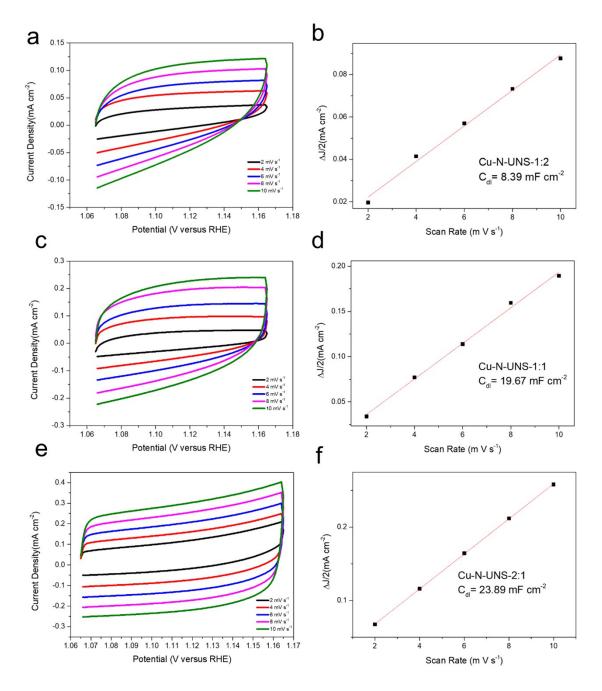

Catalyst -		Atomi	c %	
	Cu	С	N	О
Cu-N-UNS-1:2	0.14	89.5	5.8	4.56
Cu-N-UNS-1:1	0.17	90.2	5.2	4.43
Cu-N-UNS-2:1	0.2	92.4	4.8	2.6

Fig. S9. (a) N₂ adsorption/desorption isotherms and (b) pore size distributions.

Fig. S10. The high diffusion-limited current densities and low ring current densities (×10) of Cu-N-UNS-2:1 and Pt/C (a). Percentage of peroxide in the total oxygen reduction products and the number of electron transfer (b) at the Cu-N-UNS-2:1 and Pt/C electrodes based on the RRDE result.

Fig. S11. Cyclic voltammograms in the region of 1.065-1.165 V vs. RHE at various scan rates and the corresponding linear fitting of the capacitive currents vs. scan rates to estimate the C_{dl} . (a) and (b) for Cu-N-UNS-1:2; (c) and (d) for Cu-N-UNS-1:1; (e) and (f) for Cu-N-UNS-2:1; (g) and (h) for Cu/N-UNS; (i) and (j) for Pt/C and the calculated C_{dl} values are shown in the insets.

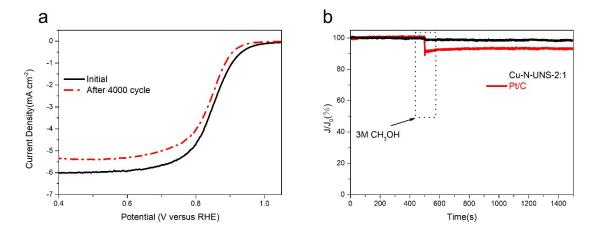



Fig. S12. Cyclic voltammograms in the region of 1.065-1.135 V vs. RHE at various scan rates and the corresponding linear fitting of the capacitive currents vs. scan rates to estimate the C_{dl} . (a) and (b) for Cu/N-UNS; (c) and (d) for Pt/C and the calculated C_{dl} values are shown in the insets.

Fig. S13. (a) Pt/C before and after 4000 potential cycles at a potential range of 1.2–1.8 V versus RHE and a sweep speed of 100 mV s⁻¹; (b) Chronoamperometric response at 0.8 V after the introduction of 3M methanol into 65 ml of 0.1 M KOH solution for Cu-N-UNS-2:1 and Pt/C, respectively.

Table S3. Activities for ORR of as-prepared catalysts and Pt/C

Catalyst	$E_{onset}(V)$	E _{1/2} (V)	J _{k at 0.85V} (mA cm ⁻²)
Cu-N-UNS-1:2	0.92	0.792	0.09544
Cu-N-UNS-1:1	0.921	0.81	1.023
Cu-N-UNS-2:1	0.987	0.898	28.86
Cu/N-UNS	0.92	0.811	0.924
Pt/C	1.003	0.85	5.04

Table S4. A survey of the catalytic performances of various ORR electrocatalysts from recent literatures.

		ORR	
Literature	Catalyst	E _{onset} (V vs.	E _{1/2} (V vs.
		RHE)	RHE)
This work	Cu-N-UNS-2:1	0.987	0.898
ACS Nano, 2019, DOI:	Cu-N-C	/	0.84
10.1021/acsnano.8b08692.	Cu IV C	I	0.84
Nature Catalysis, 2018, 1, 781–	Cu SAs/N-C	/	0.895
786.	Cu S/15/11 C	,	0.073
Small, 2017, 13, 1700740.	25% Cu-N/C	0.914	0.813
Adv. Energy Mater.	C-I 9 /9CO	0.02	0.82
2018, 1802263	CoIn ₂ S ₄ /S-rGO	0.93	
ACS Appl Mater Interfaces,	C_{2} N C_{3}	1	-0.156 V
2016, 8, 21431-21439.	Cu-N-C	/	vs (SCE)
Adv. Energy Mater.	CoS _x @PCN/rGO	0.89	0.78
2018, 8, 1701642	COS _x @FCIV/IGO	0.69	0.78
J. Mater. Chem. A, 2019, DOI:	Fe-N-C-800	/	0.883
10.1039/c9ta01953g.	1 0-11-0-000	1	0.003
Adv. Energy Mater.	rGO/CB ₂ /Co-Bi	0.88	0.7
2018, 1801495		0.00	V.,
Adv. Energy Mater.	DN-CP@G	N/A	0.801

2018, 1703539				
Adv. Mater.	NCNF-1000	0.97	0.82	
2016, 28, 3000–3006	NCINI-1000	0.97	0.02	
Adv. Energy Mater.	N-GCNT/FeCo-3	1 02	0.02	
2017, 7, 1602420	N-UCN 1/F6C0-3	1.03	0.92	

Table S5. A survey of the performance of primary Zn-air batteries with various electrocatalysts

		Looding	Peak power
Literature	Catalysts	Loading (mg cm ⁻²)	density (mW
			cm ⁻²)
This work	Cu-N-UNS-2:1	1	134.7
Small, 2017, 13,	259/ G. N/G	1	122
1700740.	25% Cu-N/C	1	132
Adv. Funct. Mater.	C. N. CNT.	1	101
2017, 1705048	Co-N-CNTs	1	101
J. Mater. Chem. A,			
2019, DOI:	Fe-N-C-800	2	135.3
10.1039/c9ta01953g.			
Adv. Energy Mater.		3 1/4	122
2018, 1802263	CoIn ₂ S ₄ /S-rGO	N/A	133
Adv. Energy Mater.,	FeCo@MNC	1	115

Electronic Supplementary Information

2017, 7, 1602420			
Adv. Energy Mater.	N-GCNT/FeCo-3	2	89.3
2017, 7, 1602420	N-OCN 1/F6C0-3	2	89.3
Adv. Energy Mater.	Cani anchitair	N I/A	127
2018, 1800480	CoNi@NCNT/NF	N/A	127
Adv. Mater. 2018,	C MOE C2 000	0.5	105
1705431	C-MOF-C2-900	0.5	105