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Section S1. The beam splitter composed of the four-element-based supercell

As described in the main text, the split angle is determined by the generalized Snell’s law for
normal incident light: & = sin~1(1/(np)), where A is the wavelength in free space and n is the
number of elements compose a supercell. To make sure the incident light can be reflected to the
propagating wave, the periodicity of the supercell should be larger than the wavelength (i.e.,
np > A). Otherwise, the incident light will become the surface wave. Therefore, n can take an

arbitrary even integer larger than 2. If n becomes larger, the split angle is getting smaller.
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Fig. S1 (a) Schematic of the metasurface supercell consisting of 4 elements. (b,c) Simulated results of the
beam splitter for RCP input, displaying (b) the x-component of the reflected E-field (E«x) and (c) the
normalized 2D scattering pattern of different components (xoz-plane). (d,e) Simulated results of the beam
splitter for LCP input, displaying (d) the y-component of the reflected E-field (E.y) and (e) the normalized

2D scattering pattern for different components (xoz-plane).



To validate the versatility of our metasurface-enabled beam splitter, here we analyze another
design with 4 elements constructing the metasurface supercell, as shown in Fig. S1(a). Similarly,
the electric field distributions exhibit the interferences between multiple reflection beams in
different directions [Fig. S1(b) and S1(d)]. Also, the split beams (1 diffraction orders) in
reflection become linearly polarized, whose angles of linear polarization are determined by the
spins of the incident light [Fig. S1(c) and S1(e)]. For instance, the LCP incident light is split into
s-polarized beams only containing Ey components, whereas other components are almost totally
suppressed [Fig. S1(e)]. From the far-field distributions, the split angle is estimated to be 443.92<
consistent with the theoretical values of #45.1< Besides the design wavelength of A = 850 nm,
the four-element-based beam splitter shows excellent performance of beam splitting and

polarization conversion in the wavelength range of 750 — 950 nm, shown in Fig. S2.
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Fig. S2 Simulated amount of light reflected into the lowest diffraction orders m and polarization bases as
a function of wavelength when the (a) RCP and (b) LCP light is normally incident on the supercell

composed of 4 elements.



Section S2. Theoretical performance of the metasurface-enabled broadband optical beam
splitter at wavelengths of 4 =800 and 900 nm
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Fig. S3 Theoretical performance of the metasurface-enabled broadband optical beam splitter at A = 800
nm. a,b) Simulated results of the beam splitter for RCP input, displaying a) the x-component of the
reflected E-field (Erx) and b) the normalized 2D scattering pattern for different components (xoz-plane).
c,d) Simulated results of the beam splitter for LCP input, displaying c) the y-component of the reflected

E-field (Ery) and d) the normalized 2D scattering pattern for different components (xoz-plane).
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Fig. S4 Theoretical performance of the metasurface-enabled broadband optical beam splitter at A = 900

nm. a,b) Simulated results of the beam splitter for RCP input, displaying a) the x-component of the
reflected E-field (Erx) and b) the normalized 2D scattering pattern for different components (xoz-plane).
c,d) Simulated results of the beam splitter for LCP input, displaying c) the y-component of the reflected

E-field (Ery) and d) the normalized 2D scattering pattern for different components (xoz-plane).



Section S3. Optical setup for characterization
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Fig. S5 The experimental setup for optical characterization of dual-band metasurface. LP: linear
polarizer, QWP: quarter-wave plate, L: focusing lens, BS: beams splitter, PM: power meter. The
light diffracted at different diffraction orders (m = +1, 0, —1) is measured and normalized with
the incident measured light to obtain reflectivity. The polarization states are verified by inserted

a linear polarization analyzer in front of the power meter.



