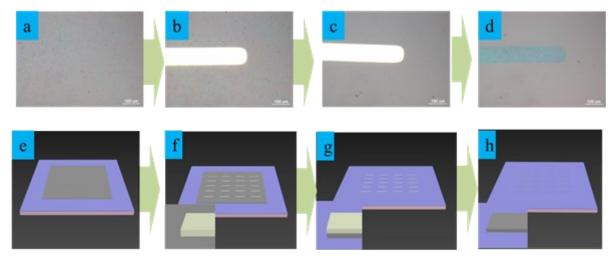
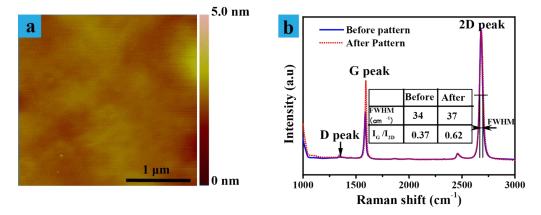
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supporting Information

High-performance Amorphous Organic Semiconductor-based Vertical Field-Effect Transistors and Light-Emitting Transistors


Haikuo Gao,^{a,b} Jinyu Liu,^{a,b} Zhengsheng Qin,^{a,b} Tianyu Wang,^a Can Gao,^a Huanli Dong^{*a,b} and Wenping Hu^c

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.


^b University of Chinese Academy of Sciences, Beijing 100049, China.

^c Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.

* Corresponding author (email: <u>dhl522@iccas.ac.cn</u> (Huanli Dong))

Figure S1 Images of graphene and the corresponding 3D models at each period of pattern: (a, e) before pattern. (b, f) aluminum deposition. (c, g) needless graphene removed with plasma; (d, h) aluminum removed.

Figure S2 (a) AFM image of the graphene, with a roughness of 0.2 nm. (b) Raman spectra of the graphene before and after pattern. The three peaks are D peak 1350 cm⁻¹, G peak at 1593 cm⁻¹ and 2D peak at 2680 cm⁻¹. The small D peak suggests the absence of sp³ carbon atoms and defects.^[1]

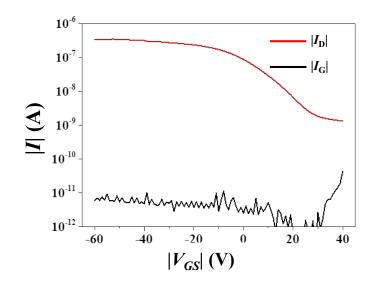


Figure S3 Typical transfer curve of an NPB-based VOFET

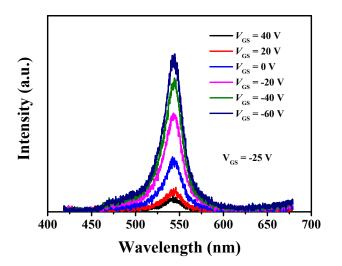
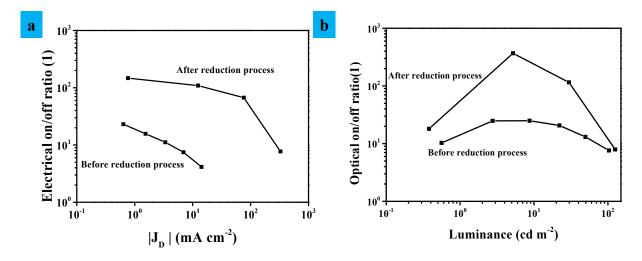



Figure S4 Spectra of NPB-Alq₃-based VOLETs based on unreduced graphene electrode

Figure S5 The **(a)** electrical and **(b)** optical on/off ratio of the VOLETs based on graphene before and after the reduction process.

References

[1] Peng Z, Yan Z, Sun Z, et al., ACS Nano, 2011, 5: 8241.