Supporting Information for:

Low-threshold Laser Medium Utilizing Semiconductor Nanoshell Quantum Dots.

Dmitry Porotnikov, ^{1,2} Benjamin T. Diroll, ⁶ Dulanjan Harankahage, ^{1,2} Laura Obloy, ^{1,3} Mingrui Yang, ^{1,2} James Cassidy, ^{1,2} Cole Ellison, ^{1,2} Emily Miller, ^{1,2} Spencer Rogers, ⁵ Alexander N. Tarnovsky, ^{1,3} Richard D. Schaller^{4,6}, Mikhail Zamkov^{1,2}

The Center for Photochemical Sciences¹, Department of Physics² and Department of Chemistry³, Bowling Green State University, Bowling Green, Ohio 43403. Department of Chemistry⁴, Northwestern University, Evanston, Illinois 60208. Department of Physics and Astronomy⁵, University of Rochester, Rochester, New York 14627. Center for Nanoscale Materials⁶, Argonne National Laboratory, Lemont, Illinois 60439.

Corresponding author: zamkovm@bgsu.edu; Tel: 419-372-0264; Fax: 419-372-9938

Figure SF1. (a). A comparison of the surface-to-volume ratios and (b) - exciton volumes corresponding to several quantum dot geometries. In (b) - from left to right: spherical CdSe quantum dots (diameter = 4 nm), CdSe/CdS dot-in-a-rod (dot diameter = 4 nm, rod length = 30 nm), CdSe/CdS core/shell (core radius = 2 nm, shell radius = 10 nm), CdSe/CdS nanosheets (20 nm \times 20 nm \times 2nm), QW nanoshells, reported

here (CdSe shell radius = 6 nm, shell thickness = 2 nm, total radius = 10 nm). Part (b) was adapted with permission from the permission of Ref. 1. Copyright 2016 American Chemical Society.

Figure SF2. Statistical analysis of particle size distributions corresponding to Fig. 3 (main text). (a,c). 9.4-nm CdS_{bulk}/CdSe NCs used for seeding the growth of quantum-well nanoshells, CdS_{bulk}/CdSe/CdS_{shell}. (b,d). 17.9-nm CdS_{bulk}/CdSe/CdS_{shell} nanoshell QDs.

Figure SF3. The summary of optical and structural characteristics for $CdS_{bulk}/CdSe/CdS_{shell}$ nanoshell QDs corresponding to other synthetic batches (PL QY = 11-17%), as discussed in the main text.

Figure SF4. (a). Absorption profile of the CdS_{bulk} "core" NCs used for seeding the growth of $CdS_{bulk}/CdSe$ core/shell QDs. (b). A characteristic TEM image of CdS_{bulk} "core" NCs. (c). Statistical analysis of particle size distributions for CdS_{bulk} "core" NCs.

Figure SF5. Emission spectra versus different pump fluences observed for higher-threshold nanoshell QD samples 2 & 3 (CdS_{bulk}/CdSe/CdS_{shell}). ASE thresholds were determined to be 140 and 133 μ J/cm², respectively. The inferior quality of these films was most likely the reason for higher thresholds as any light scattering or haziness of films diminished the ability to see ASE.

Figure SF6. PL intensity decay of 17.9-nm CdS_{bulk}/CdSe/CdS_{shell} nanoshell QDs. The PL lifetime was fitted using a triple exponential function to find average value using the following equation: $\tau_{av} = \sum_{i=1}^{3} A_i \tau_i / \sum_{i=1}^{3} A_i$ where A_i and τ_i represent the amplitude and the lifetime of each of the three exponents used in a triple exponential fit, respectively.

Figure SF7. (a). Time-resolved transient PL intensity for CdS_{bulk}/CdSe/CdS_{shell} QDs measured at the 8 μ J/cm² pump excitation fluence. (b). The difference of PL spectra corresponding to 25 μ J/cm² and 4 μ J/cm² pump excitation fluences ("25" – "4"). The single exponential decay time constant is 121.2 ± 2.9 ps. (c). The difference of PL spectra corresponding to 8 μ J/cm² and 4 μ J/cm² pump excitation fluences ("8" – "4"). The single exponential decay time constant is 121.2 ± 2.9 ps. (c). The single exponential decay time constant is 220 ± 8 ps.

Determination of biexciton lifetimes from TA kinetics.

In order to extract biexciton lifetimes from the bleach recovery kinetics (Fig. 5d, main text), we have employed the coupled rate equation formalism,² which assumes: (*i*) - Poisson distribution of initial multi-exciton populations in a nanocrystal ensemble, and (*ii*) - statistical scaling of Auger lifetimes. Within this strategy, the average number of photons absorbed by a nanoparticle, $\langle N \rangle$, is first estimated from the known excitation pulse power, spectral density, and the sample absorption profile.³ The average number of absorbed photons per particle is subsequently used to create the statistical distribution of nanoparticle fractions in the sample that receive n = 0,1,2 ... excitons, P(n). To this end, the probability of a nanocrystal absorbing *n* photons, f(n), is assumed to follow the Poisson distribution: $f(n) = \langle N \rangle^n \times e^{-n} / n!$. Under the assumption that multiple excitons in a given nanocrystal decay sequentially (*via* the Auger recombination), the temporal evolution of the *n*-exciton population in a particle, P(n, t), can be determined by solving coupled rate equations:

$$\frac{dP(n,t)}{dt} = \frac{P(n+1,t)}{\tau_{n+1}} - \frac{P(n,t)}{\tau_n}$$
(SE1)

where, τ_n represents the lifetime of the *n*-exciton state. The resulting evolution of multi-exciton populations, P(n,t), obtained by solving Eq. 1, depends on a single unknown parameter, τ_2 , corresponding to the Auger-limited biexciton lifetime. The single exciton lifetime, τ_1 , as well as multi-exciton lifetimes (τ_n ; n>2) entering Eq. 1 can be determined *a priori*. To this end, τ_1 is either extracted from the long-time TA bleach recovery at low excitation powers or obtained from the PL intensity decay (Fig. SF7). The lifetimes of multi-exciton states, τ_n , are computed using a statistical scaling law: $\tau_n^{-1} = n^2(n-1)\tau_2^{-1}/4$.⁴ Owing to relatively low excitation powers used in present experiments ($\langle N \rangle \sim 1$), we assume that the TA bleach, ΔA , is contributed by up to four excitons, such that the average number of excitons per nanocrystal becomes, $P(t) = 4 \times P(4,t) + 3 \times P(3,t) + 2 \times P(2,t) + P(1,t)$. The resulting parametric curve, $P(\tau_2, t)$, was used to fit the experimental measured TA bleach, $\Delta A(t)$, in order to determine the best fitting parameter, τ_2 . We note that despite n = 2 being highest exciton occupation number for zerodimensional CdSe NCs, due to a continuous electron density in CdS/CdSe nanoshells, these colloids are likely to support a larger number of band-edge excitons.

References.

- ¹ Kholmicheva, N.; Budkina, D. S.; Cassidy, J.; Porotnikov, D.; Harankahage, D.; Boddy, A.; Galindo, M.; Khon, D.; Tarnovsky, A. N.; Zamkov, M. Sustained Biexciton Populations in Nanoshell Quantum Dots. ACS Photonics **2019**, *6*, 1041-1050.
- ² Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, a. C.; Eisler, H.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. *Science* **2000**, *290*, 314-317.
- ³ Huang, J.; Huang, Z.; Yang, Y.; Zhu, H.; Lian, T. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. *J. Am. Chem. Soc.* **2010**, *132*, 4858-4864.
- ⁴ Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. *Science* **2000**, *287*, 1011-1013.