Supplementary Information

Ultrasound-responsive alkaline nanorobots for the treatment of lactic acidosis-mediated doxorubicin resistance

Xia Meng^{a,#}, Yurui Xu^{a,#}, Qiangbing Lu^a, Lei Sun^a, Xueying An^b, Jikang Zhang^a, Jianmei Chen^a, Ya Gao^a, Yu Zhang^{a,*} and Xinghai Ning^{a,*}

^a National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, 210093, Nanjing, China, E-mail: xning@nju.edu.cn; zhangyu2016@nju.edu.cn ^bThe Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to

Medical School of Nanjing University, Nanjing, China

[#]These authors contributed equally to this work.

Fig.S1 The apoptosis of MHCC-LM3, A549 and MCF-7 cells induced by pathological conditions, including hypoxia (HP), low glucose (LG) and lactate (LA).

Fig.S2 The cytotoxicity of NaHCO₃ and Na₂CO₃ in MHCC-LM3, A549 and MCF-7 cells.

Fig. S3 Cell apoptosis of MHCC-LM3, A549 and MCF-7 cells under different culture conditions for 24 h.

Fig. S4 Flow cytometric measurement of DOX uptake in MHCC-LM3, A549 and MCF-7 cells under different conditions.

Fig.S5 The fluorescent spectrum of free DOX and AN-DSP.

Fig.S6 GC-MS of PFC and AN-DSP.

Fig.S7 Energy dispersive spectroscopy of AN-DSP.

Fig.S8 In vitro release profiles of DOX and Na_2CO_3 from AN-DSP in pH 6.5 with or without ultrasound.

Fig. S9 Flow cytometric measurement of DOX uptake in MHCC-LM3, A549 and MCF-7 cells under different conditions.

Fig. S10 Cell apoptosis of MHCC-LM3, A549 and MCF-7 under different culture conditions.

Fig. S11 Cellular uptake of DOX in tumor tissues with or without ultrasound.

Fig. S12 The measurement of tumor pH. Data are presented as the means \pm s. d, n=15.

Fig.S13 The ability of NaHCO₃ (0.2 M) and Na₂CO₃ (0.2 M) to neutralize 1 mL acidic culture medium (pH 6.5) to pH 7.4.

Fig. S14 The release of DOX from AN-DSP under ultrasound using an phantom model composed of agar, glycerol and distilled degassed water (3:4:93, w/w/w).

Formulations	Particle	Zeta	EE _{DOX} %	EE _{Na2CO3}	EE _{PFC} %	$DL_{DOX}\%$	DL Na2CO3%	DL _{PFC} %
	size	potential		%				
AN	148.2±2.1	-23.1±0.03	-	-	-	-	-	-
AN-DSP	150.2±1.4	-25.1±0.2	87.4±2.7	73.2±1.4	12.1±0.2	4.5±0.2	7.3±0.1	3.2±0.04
AN-DP	149.2±2.5	-24.1±0.6	89.1±1.9	-	15.3±0.1	4.0±0.3	-	3.5±0.02
AN-SP	151.5±0.9	-24.9±0.4	-	74.1±2.4	11.0±0.3	-	7.9±0.2	3.9±0.05

Table S1. The characterization of different formulations.

Abbreviations: AN (ultrasound-responsive alkaline nanorobots), AN-DSP (ultrasound-responsive alkaline nanorobots containing DOX, Na₂CO₃ and PFC), AN-DP (ultrasound-responsive alkaline nanorobots containing DOX and PFC), AN-SP (ultrasound-responsive alkaline nanorobots

containing Na₂CO₃ and PFC), EE_{DOX} % (encapsulation efficiency of DOX), EE_{Na2CO3} % (encapsulation efficiency of Na₂CO₃), EE_{PFC} % (encapsulation efficiency of PFC), DL_{DOX} % (loading content of DOX), DL_{Na2CO3} % (loading content of Na₂CO₃), EE_{PFC} % (loading content of PFC).

Parameter	Control	AN-DSP		
WBC (10 ⁹ /L)	4.8±1.6	4.3±0.9		
RBC (10 ¹² /L)	6.6±1.03	6.9±1.4		
ALT (IU/L)	48.0±3.6	46.4±2.9		
AST (IU/L)	171.5±22.5	183.9±45.1		
TP (g/L)	42.9±3.4	47.3±4.9		
ALB (g/L)	27.4±3.9	24.9±5.2		
HGB (g/L)	121±21.7	112.6±19.4		
UREA (mmol/L)	6.4±1.2	7.3±1.1		

 Table S2. The hematological parameters of the mice.

Abbreviations: WBC: white blood cell, RBC: red blood cell, ALT (alanine aminotransferase), AST (aspartate aminotransferase), TP (total protein), ALB (albumin), HGB: hemoglobin, UREA (urea nitrogen).