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1 MD simulation details

Molecular dynamics (MD) simulations [1] of water and argon nanodroplets coalescing on super-
lyophobic surfaces are performed in order to study the effects of gas rarefaction and molecular
thermal motion on the coalescence-induced jumping speed. MD is a deterministic, particle
based simulation tool in which the time evolution of a set of interacting particles is carried out
by integrating Newton’s equations of motion: ~Fj = mj~aj, where ~Fj is the net force on an atom
j, mj is its mass and ~aj is the acceleration. The force on any atom is obtained by taking the
negative gradient of the potential energy function due to all its neighbours.

Two different types of droplets are considered in the present study. The first set included
two water droplets in near-vacuum/nitrogen atmosphere coalescing on top of a superlyophobic
surface. For reasons of computational efficiency, water is modelled using the mW mono-atomic
water model [2]. Here, each water molecule is modelled as a single atom and the interactions
among these atoms are described by a Stillinger-Weber potential with potential parameters fine
tuned to match the fluid properties of real water. The vapor pressure of this model at 300 K
is negligible. In order to study the effect of outer gas on jumping speed, a single-site nitrogen
(N) model is introduced, which uses the standard Lennard-Jones (LJ) potential to describe the
inter-atomic interactions [3]:

Ujk = 4εjk

[(
σjk
rjk

)12

−
(
σjk
rjk

)6
]
, (1)

where εjk is the van der Waals interaction energy between the atoms, σjk is the length parameter
and rjk is the distance between the atoms (εNN = 0.189 kcal/mol, σNN = 0.375 nm, εmW−N =
0.13 kcal/mol and σmW−N = 0.324 nm). A cut-off distance of rc = 1.3 nm is used in the
present study and Lorentz-Berthelot mixing rules are employed to determine the cross-species
interaction parameters.
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Figure S1: (a) Starting the simulations with two mW water droplets on top of a ‘slightly’
lyophobic wall. (b) The same droplets after the wall-liquid interaction potential is lowered to
create a superlyophobic wall. We use a system-specific value of ε between wall and the fluid:
εmW−W = 0.01 kcal/mol and εAr−W = 0.02 kcal/mol.

In the second set of simulations, argon (Ar) droplets are simulated at 85 K in pure vapor.
The interactions between any two atoms is also modelled by an LJ potential with εArAr = 0.238
kcal/mol, σArAr = 0.34 nm and rc = 0.851 nm. The thermophysical properties of different fluids
used in the simulations are provided in the table below.

Description Value

mW density ∼ 1000 kg/m3

mW viscosity 310 µPa-s [4]
mW specific heat capacity 1833 J/kgK [2]
mW surface tension 65.4 mN/m [2]
Nitrogen density 0 – 22 kg/m3

Nitrogen viscosity (T = 300 K) 17.2 µPa-s
Argon (liquid) density ∼ 1410 kg/m3

Argon (liquid) viscosity 210 µPa-s
Argon surface tension 8.3 mN/m
Argon (vapor) density ∼ 14 kg/m3

Argon (vapor) viscosity (T = 85 K) 6.4 µPa-s

We begin the simulation by constructing a single droplet of a specified number of molecules
according to the intended size R. This droplet is equilibrated in pure-vapor conditions for a
long time and the relevant data such as positions and velocities of atoms are stored during the
course of this run. Two unique random frames from this set are then taken and are placed on
top of a wall to obtain the initial condition of our system.

Underneath the droplets, a wall is placed with FCC crystal structure and lattice parameter
a = 0.392 nm. The interaction between fluid and wall atoms (W) are modelled using the LJ
potential. The thickness of the wall is chosen to be the fluid-wall cut-off distance. We initially
start the simulation with the two liquid droplets sitting on a ‘slightly’ lyophobic wall (see Fig.
S1(a)). Then, the energy parameter between the wall and liquid atoms in the LJ potential
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is gradually reduced in small steps so that the contact angle between them increases well
above 150◦ (see Fig. S1(b)). The full system is then equilibrated further for 5 ns. During the
equilibration stage, a Berendsen thermostat is applied to the droplets and the time-integration
is performed using a velocity-Verlet algorithm with a time-step size of 0.01 ps for water-based
systems and 0.004 ps for argon-based systems. In all cases, the wall atoms are frozen to their
initial lattice coordinates.

After both droplets are equilibrated for a long time, an impact speed of 2 m/s (sufficiently
small to avoid having any influence on the jumping dynamics [5]) is given to them towards each
other so that they will come together and coalesce. No thermostat is applied to the fluid during
coalescence in order to avoid biasing the molecular dynamics. This procedure is repeated, and
many realisations are performed for any single case in order to obtain statistically reliable
results. Jumping speed is defined as the instantaneous centre-of-mass speed of the final droplet
in the direction normal to the wall at the moment it loses contact with the wall. Water droplets
of sizes R = 3.1, 4.2, 5.1, 7.2 and 15.1 nm, and argon droplets of sizes R = 8.4, 13.3, 23.1 and
55.2 nm are simulated in the present study.

2 VoF simulation details

Numerical simulations.— To study droplet coalescence and subsequent jumping on an ideal
superlyophobic surface, we simulate the case of symmetric binary coalescence using the volume-
of-fluid (VoF) approach with custom user-defined function for automated mesh adaption in
order to well resolve the liquid/gas interface implemented in a finite-volume solver (Fluent
v17.0, Ansys Inc.).

A uniform structured grid is used as the parent mesh. Three levels of adaption (cell splitting)
are allowed providing for a minimum cell volume (Vmin) in the interface region with charac-

teristic length (V
1/3
min) of 1.9% the initial droplet radius, R. To simulate an ideal, non-wetting

surface, the droplet wetting wall is assigned a single valued contact angle of θc = 180◦. Due
to symmetry, only one quarter of the domain is simulated with dimensions of 3R × 3R × 5R.
The simulation domain is bounded by two symmetry planes dissecting the droplets where, by
definition, the contact angle is constant at π/2; two boundaries specified with a shear-stress
free condition (on the gas); the droplet wetting wall specified as no-slip (which still permits
contact line motion, due to the 180◦ contact angle) and a single valued contact angle (contact
angle hysteresis neglected); and an outlet vent, with the backflow direction specified from the
neighbouring cell in the flow domain, opposite to the droplet wetting wall.

The droplet volume is patched into the simulation domain with a geometry corresponding
to the droplets just in contact. The limited grid resolution led to an initial bridge radius of
≈ 0.1R that initiated the start of coalescence at t = 0. The properties of the liquid droplet, the
surrounding gas and the interface between them are nominally those of water and humid air at
room temperature (argon and argon vapor at 85 K), which corresponds to a nominal viscosity
ratio, density ratio and surface tension of µl/µg = 56 (40) and ρl/ρg = 815 (307), γ = 65.4
(8.3) mN/m respectively. To simulate other viscosity ratios, the gas side viscosity is modified
accordingly. The density ratio is kept fixed at the nominal base value for each simulation.

Discretization for pressure, momentum and volume fraction is done with the PRESTO!,
QUICK and Geo-Reconstruct algorithms, respectively. The PISO algorithm is used for pressure-
velocity coupling. The continuum surface force (CSF) model is used to capture the contribution
of surface tension to the normal stress on the interface [6]. The VoF implementation is intrin-
sically volume conserving [7]. This is confirmed for all simulations by tracking the volume of
the droplet phase during the simulations. The liquid-vapor interface is implicitly represented
by the VoF function, which varies rapidly over a short distance, approximately the mesh cell
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Figure S2: Volume-of-fluid simulation snapshots of two water droplets with R = 7.2 nm (Ohl =
0.45) coalescing and jumping when the viscosity ratio is small (i.e. jumping in the vacuum
limit). Here, τ ≡

√
ρlR3/γ is the inertial-capillary time scale.

size. This abrupt change of the VoF function creates errors in calculating the normal vectors
and the curvature of the interface used to evaluate the interfacial forces. These errors induce
non-physical parasitic currents in the interfacial region, e.g. spurious velocities. Good results
in reducing spurious velocities are obtained by using Fluents native smoothing function. One
fully-weighted cycle of smoothing at each iteration is found to be suitable for the simulations.
Under-smoothing, by reducing the weighting for a single smoothing cycle, led to noisy results
and, in some cases, droplets that would begin accelerating after contact with the surface had
been lost. Over-smoothing should also be avoided as this unphysically reduces the local cur-
vature of the bridging region leading to a reduction in the simulated jumping speed. Adaptive
time stepping was used to control the progression of the simulation. An initial period of 10
constant time steps (t/τ ≤ 1×10−2) was followed by varying time steps maintaining the global
Courant number of 0.5. At the same time, the mesh was adapted every 10 time steps. This en-
sured that the interface never left the region of highest refinement during the simulation. Figure
S2 shows typical VoF simulation snapshots during coalescence of two R = 7.2 nm droplets.

Determination of jumping speed from simulations.— Droplet jumping speeds are determined
from simulations by calculating the mass-averaged droplet velocity when the droplet lost contact
with the surface. It should be noted that, during the coalescence process, the droplet typically
loses contact with the substrate twice. The first instance occurs during the initial bridge
development where the entrainment liquid from the droplet bulk into the developing bridge
region results in loss of contact with the substrate. As the liquid bridge expands, it eventually
impacts the substrate leading to a substantial increase in the wetted area of liquid on the
substrate. The point of departure was found to correlate well with normal force on the wall
reaching a local negative maximum. An alternative definition of the jumping speed could be
determined as when the droplet lost viscous communication with the wall after the local negative
maximum normal force on the wall marked by a decay to zero transient force on the wall. This
definition coincides with the observed start of a smooth linear decay in droplet velocity due
primarily to drag with the surrounding fluid. The two definitions of jumping speed converge
as the viscosity ratio approaches zero.

Curve fit for Ohlc data.— A cut-off Ohlc is defined as the minimum Ohl at which the VoF
simulations predict no jumping occurs. The inset of Fig. 1d of the manuscript shows the de-
pendence of Ohlc on the viscosity ratio µr ≡ µg/µl. As the gas viscosity is reduced considerably
below that of the coalescing liquid, it will become increasingly ‘passive’ and the dynamics is
solely governed by the properties of the coalescing liquid. Consequently, the jumping speeds
should asymptote to those in vacuum as µr is decreased. This feature is qualitatively captured
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by VoF simulations. The data from our VoF simulations are fit to a curve of the form:

Ohlc = A
(

1− e−( lnµr
B )

C)
+D, (2)

where the fitting parameters A = 2.458, B = 6.591, C = 2.361 and D = 0.043 with coefficient
of determination r2 = 0.999. While the above equation gives Ohlc = D when µr = 1 (i.e. when
both coalescing liquid and the outer medium have identical viscosities, as shown previously [8]),
it also asymptotes to a finite positive value A+D = 2.501, as µr → 0 (i.e. in the vacuum limit,
as studied here). Eq. 2 is plotted in the inset of Fig. 1d of the manuscript.

3 Jumping speed in vacuum

We begin with the most simple case when two nanodroplets coalesce in vacuum, where the
process is adiabatic. This will allow us to isolate the coalescing liquid’s dynamics during the
process, so that a comparison with coalescence in gas will help us identify the role of the gas.

When two droplets coalesce, energy is released as the total interfacial area decreases. A
portion of this energy released is dissipated due to viscosity of the coalescing droplets (Eµ).
The remaining portion of the total energy budget is utilised to overcome the adhesion from the
surface (Wadh), generate a flow field inside the droplet after coalescence that does not contribute
to jumping (Ecirculation) and convert it into the kinetic energy (KE) of the final droplet (if it
jumps off the symmetry breaking superlyophobic surface), i.e.

γ∆A = Wadh +Wflow, (3)

where
Wflow = Eµ + KE + Ecirculation, (4)

γ is the interfacial tension and ∆A = 4πR2(2 − 22/3) is the reduction in the surface area due
to coalescence, where we assume a sphere is rapidly formed. Furthermore, in the next section,
we show Wadh ∼ KE.

At the point where the droplet leaves the surface along its trajectory, Wflow is composed
of the viscously dissipated flow component Eµ, the translational kinetic energy KE, and what
is left of the flow within the droplet, Ecirculation, following jumping that is viscously dissipated
quickly after the jump point. The energy spent due to viscous dissipation results in an increase
in the average temperature over the entire coalescing droplets and is given by 2mdcp∆Tv, where
md = 4πR3ρl/3 is the mass of a single droplet of radius R with density ρl before coalescence, cp
is the specific heat capacity of the coalescing liquid, ∆Tv = Tjump − Tinitial is the temperature
rise when droplets coalesce, with subscript ‘v’ representing processes occurring in vacuum, Tjump
is the temperature of the final droplet when it takes off the non-wetting surface and Tinitial is
the initial temperature of the smaller droplets. In Fig. 2(c) of the main Letter, the variation
of temperature with time during coalescence of two water nanodroplets and the corresponding
simulation snapshots are shown. Notably, temperature is far easier to measure in MD than
directly computing viscous dissipation from gradients of the flow fields. For nanodroplets,
the coalescence process is largely viscous dominated and by noticing that the temperature of
the final droplet does not increase appreciably after coalescence has completed, we assume the
energy associated with the circulatory flow field inside the droplets to be negligible (Ecirculation ≈
0). So Eq. 3 changes to

γ

[
4πR2(2− 22/3)

]
= Wadh + 2mdcp∆Tv +mdV

2
v . (5)
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Figure S3: The effect of wall wettability on the jumping speed for coalescing argon droplets
(R = 13.3 nm). The results of Ref. [5] is reproducible at lower εAr−W . For argon droplets in our
simulations, εAr−W = 0.02 kcal/mol is used in order to avoid complications due to increased
thermal fluctuations.

Rearranging the terms gives:

∆Tv =

(
1.24− V ∗2v −

Wadh

mdU2

)
(γ/µl)

2

2cp
Oh2

l . (6)

In the above equation, V ∗v = Vv/U is the jumping speed in vacuum normalised with the inertial-
capillary velocity scale U =

√
γ/ρlR, and Ohl = µl/

√
ρlγR is the Ohnesorge number based

on liquid properties, where µl is the dynamic viscosity. With V ∗2v � 1, Wadh ∼ KE and the
properties of mW water as given in the table above, Eq. 6 simplifies to ∆Tv(K) ≈ 15 Oh2

l , so
that as one would expect, viscous dissipation increases as the ‘dimensionless viscosity (Ohl)’
increases. In Fig. 2(d) of the main Letter, the temperature rise measured from our MD sim-
ulations is compared with the above equation, and their closeness validates the assumptions
made.

4 Jumping speed in presence of a rarefied gas

The relevant physics may be different if we have a surrounding gas/vapor in the system. Since
the surface tension (γ) is a weak function of the pressure outside the droplets (p∞), the total
energy budget of the system in the presence of a gaseous atmosphere can be assumed to be the
same as that in the absence of it. However, during the coalescence process, a part of the energy
budget is spent in order to overcome the drag from the ambient gas. The energy balance in
this case is:

γ∆A = Wadh + 2mdcp∆Tg +mdV
2
g +Wdrag, (7)

where ∆Tg is the increase in temperature of the droplets (subscript g denotes ‘in the presence
of gas’), Vg is the final droplet jumping speed and Wdrag is the work done against drag during
the time both droplets coalesce.

We perform MD simulations on argon droplets to carefully determine the share of Wadh in
the overall energy balance. Out of various factors that defines the coalescence-induced jumping
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Figure S4: Temperature rise during coalescence of two water nanodroplets with R = 5.1 nm as
a function of ambient pressure. ∆T is essentially independent of p∞.

speed of nanodroplets from superlyophobic surfaces, adhesion from the substrate and contact
angle hysteresis, which stem from the wettability of the underlying substrate, play crucial roles
and have already been studied for nanodroplets in the past [9–11]. For example, Sheng et
al. [10] observed larger adhesion and higher contact angle hysteresis on surfaces with higher
wettability, which is reflected in the reduced jumping speed of the coalesced nanodroplet. Here,
we quantify the relative magnitudes of Wadh and KE in order to investigate their respective
contributions to the energy balance.

Figure S3 shows the variation of scaled jumping speed as a function of wall-argon energy
interaction parameter, εAr−W . Since the major effect of adhesion is in changing the jumping
speed by a factor of ∼ 1 in the range of εAr−W investigated (where θc is well above 150◦), we
conclude that Wadh ∼ KE. We find that smaller droplets lose contact with the wall at low
values of ε, due to increased effects of thermal fluctuations. Furthermore, we assume Wadh is
independent of the outer conditions, as we observe no discernible changes in the coalescing
droplet geometry during the process (see supporting video and Fig. S8 below).

From our MD simulations, we observe that ∆Tg ≈ ∆Tv (see Fig. S4), indicating that the
internal viscous dissipation during the coalescence of nanodroplets is not drastically affected
by the presence of a gaseous medium outside, i.e. heat transfer from the liquid to the outer gas
phase is negligible over the time-scale of the process.

In order to characterise the effect of drag from the outer gas on the jumping speed, we
define a Knudsen number based on the mean-free-path of the surrounding gas and the droplet
radius, i.e. Kn = λ/R. Here we evaluate the mean-free-path of the surrounding gas using the
relationship between λ and viscosity of the gas (µg):

λ =
µg
p∞

√
πkBT

2m
, (8)

where m is the mass of a single gas molecule.
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Figure S5: Variation of drag on small spheres for a wide range of Kn.

4.1 Drag on coalescing droplets

Estimating Wdrag in Eq. 7 is challenging. The ideal way of estimating Wdrag during coalescence
is by explicitly determining the total stress causing drag over the entire surface and summing
the work done against it over the time scale of droplet coalescence. However, evaluating local
stress tensors on the droplet surface in nanoscale systems is highly challenging because (a)
thermal fluctuations are strong, (b) there can be slip across interfaces and (c) the process
happens very rapidly. In what follows, we try to establish a crude estimate, which captures
some of the underlying physics of the work done against the drag during coalescence-induced
jumping of nanodroplets.

For a small rigid, spherical particle of radius a, moving through a highly viscous infinite
medium (µg), with a relative speed v at low particle Reynolds number, the Stokes drag force
experienced by it is given by

FStokes = 6πµgav, (9)

which is accurate only when the Knudsen number (based on particle radius) is small. In the
coalescence-induced jumping problem that we study, the drag will be different from the above
expression due to three main reasons: (a) because of the rarefaction in the surrounding gas
resulting in finite non-zero particle Kn, (b) due to the influence of the wall under both droplets
and (c) due to the complex flow geometry during the coalescence process. We consider each of
these problems in detail below.

(a) Modification due to finite non-zero Kn— In this case, the slip between the particle
surface and the ambient medium must be accounted for, while evaluating the drag force on it.
There have been many attempts to incorporate slip at interfaces into the Stokes-flow analysis
and one of the most successful ones for determining the drag force on small spheres moving
through a gas, without any restrictions on Kn, is by Warren F. Phillips [12]. His approximate
theoretical expression gives

Fdrag = FStokesq(Kn) = 6πµgav

(
1− 15Kn− 15.42Kn2 + 54Kn3

15 + 12Kn + 18Kn2 + 54Kn3

)
, (10)

where q is a correction factor incorporating the effects of gas rarefaction on a moving spherical
particle in an infinite medium. Figure S5 shows how the drag force on a small sphere gets
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Figure S6: (a) Slice of the MD domain used in this section to study drag on a spherical
nanodroplet approaching a wall (water droplet of R = 5.1 nm in nitrogen atmosphere at Kn
= 3.7). (b) Comparison of drag obtained from MD simulations with Hocking drag and drag
derived from lubrication approximation. Force is calculated using the instantaneous speed of
the sphere at each vertical location. While the latter diverges for the droplet near the wall,
Hocking’s expression seems to better capture the physics even for such nanoscale systems.

modified for a wide range of particle Kn [12]. In our analyses, we assume complete accommo-
dation (i.e. purely diffuse reflection) between water droplets and nitrogen molecules. The above
equation is derived by assuming that the mean speed is much less than the thermal speed of
particles in the surrounding medium, which is the case when the final droplet jumps off the
superlyophobic surface.

(b) Modification due to the presence of wall (sphere approaching a wall)— When a particle
approaches a wall, the classical analysis based on the lubrication approximation predicts that
the opposing force is inversely proportional to the gap (h) between the particle and the wall [13],
i.e.

FLubrication = FStokesφL = 6πµgav

(
a

h

)
, (11)

for large values of φL. This would mean that, for a finite downward force (e.g. due to gravity),
a contact is impossible in finite time.

Hocking [13] used Maxwell’s slip boundary condition to quantify the resisting force between
approaching surfaces and found that the force depended only logarithmically on the gap width
between the surfaces, in which case a contact can be achieved in finite time. His analysis gives:

FHocking = FStokesφH = 6πµgav

(
2a

hη2
[(1 + η)log(1 + η)− η]

)
, (12)

where η ≡ 6λ/h is like a local Knudsen number.
Here, we perform a separate set of MD simulations in order to compare the force experi-

enced by a droplet moving towards a wall with that predicted by the Hocking and lubrication
expressions for the resisting force. Figure S6(a) shows the geometry used for this separate anal-
ysis and in Figure S6(b), we compare the forces. We equilibrate a system containing a water
droplet of R = 5.1 nm in a nitrogen atmosphere at p∞ = 3.75 atm at T = 300 K for a long
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Figure S7: Schematic of the coalescence process for determining the work done against drag
during droplets coalescence.

time (∼ 5 ns) and apply an impact speed of 20 m/s (of the order of maximum jumping speed
observed in our simulations) to the droplet towards the wall from a height of 50 nm above the
wall. For the droplet near the wall, we explicitly measure the force on it in a direction normal
to the wall due to all surrounding gas molecules as a function of the gap width h. While the
classical analysis based on lubrication approximation wildly over-predicts the opposing force in
the lubrication region (h < 5 nm), the reduction factor φH helps Hocking’s expression to follow
the variation of the force observed in nanoscale droplets.

The above two expressions are derived for a simpler flow geometry than what we have
when two droplets coalesce and jump. Consequently, it may not be appropriate to use any of
them, even Hocking’s expression, in determining the effect of wall on the drag on droplets as
they merge. Nevertheless, we note that depending on the problem at hand, some reduction
factor (φ or q) modifies the Stokes drag on a spherical particle to account for slip at interfaces
(in the simplest case) caused by kinetic gas effects; an exact theoretical expression without
experimental fitting is not always available, even for some simple systems.

(c) Modification due to complex flow geometry— In order to evaluate the total work done
against drag during the coalescence process, we decompose the drag into two components: the
first being the drag on the droplets because of their motion towards each other in the direction
parallel to the underlying wall as they coalesce (W‖) and the second is due to their motion in
the direction normal to the wall (W⊥). Next, we will make some assumptions about how to
model these two phases of the process in a manner that captures the main physics but remains
as simple as possible to work its way into our theoretical equation (Eq. 7).

For evaluating W‖, we equate the droplets’ instantaneous total surface area A(t) to that
of two full spheres moving in an infinite ambient medium of viscosity µg, each with a speed
relative to the ambient medium given by half the instantaneous speed of approach of the
droplets: Vx(t) = ∆lx/∆t (see Fig. S7). In moving both droplets towards each other by a
distance ∆x parallel to the wall, the infinitesimal amount of work done against the drag will
be:

∆W‖ = 2

(
6πµga(t)

Vx(t)

2
q(Kn)

)
∆x

2
, (13)
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Figure S8: The time evolution of scaled total surface area and approach speed of the droplets
during coalescence of two R = 5.1 nm droplets.

where a(t) =
√
A(t)/8π is the radius of two full spheres as described above. Here we have used

Eq. 10, since the coalescence happens in a finite non-zero Kn atmosphere.
Similarly, in order to evaluate W⊥, the instantaneous total surface area is equated to a

single sphere of the same area moving in the infinite ambient medium with a speed given by
the instantaneous speed of coalescing droplets in y direction. Then, the work done against this
drag will be:

∆W⊥ =

(
6πµg

√
2a(t)|Vy(t)|q(Kn)

)
|∆y|. (14)

Therefore, the total work done against drag during coalescence (Wdrag) can be obtained by
summing all the infinitesimal amounts of both contributions from the beginning of coalescence
until it ends, multiplied by an unknown correction factor ψ that we introduce here in order
to accommodate the effects of a complex deforming liquid body and any possible influence of
the underlying wall on drag that is not considered in this simplified analysis. Obtaining an
analytical expression for this correction factor will be difficult and so, ψ will determined later
by curve fitting.

In Fig. S8, the time evolution of the scaled total surface area and the approach speed are
shown for R = 5.1 nm droplets. Kn→∞ denotes simulations in vacuum. As we have already
seen, the dynamics is nearly unaffected by the presence of an ambient gaseous medium and
the coalescence process at such high Ohl is ‘smooth’, as there are no obvious oscillations in
any of the measured quantities. In the figure, we determine A(t) in MD simulations using a
method described in one of our previous studies [14]. Figure S9 shows how the centre-of-mass
speed in the direction normal to wall changes as coalescence proceeds for R = 7.2 nm droplets.
The major change in the dynamics occurs only towards the end, where droplets have already
merged and the final droplet is about to lift-off from the surface. Since we are interested in how
the jumping speed gets modified relative to its value in the limiting vacuum case, we evaluate
drag in all cases by using Vy(t) corresponding to the vacuum case. Hence, we have only one
fitting parameter in the entire analysis: ψ.
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Figure S9: The time evolution of centre-of-mass speed of the droplets (R = 5.1) in the direction
normal to the wall at two representative outer conditions. The presence of an outer fluid changes
the behaviour of Vy, especially towards the end of the coalescence process. Simulation snapshots
show the coalescence in vacuum.
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Figure S10: Variation of the coefficient of determination with the correction factor ψ for droplets
with R = 5.1 nm and R = 7.2 nm.

Equating Eq. 5 to Eq. 7 by setting ∆Tg ≈ ∆Tv, the energy balance will then reduce to

mdV
2
g = mdV

2
v −Wdrag. (15)

Dividing both sides by mdU
2 and subsequent modification gives,

V ∗g =

√
V ∗2v −

Wdrag

mdU2
=

√
V ∗2v −

ψ
∑

(∆W⊥ + ∆W‖)

mdU2
. (16)

In the above equation, as mentioned before, the summation is performed over the timescale
of coalescence, i.e. from the moment two droplets touch till the final droplet lifts off. It must
be noted that although the above equation provides reasonable insights about the process, it
requires the knowledge of V ∗v to obtain V ∗g .

In Figs. 2(a) and 2(b) of the main Letter, the scaled jumping speed as a function of Kn is
shown for two systems with R = 7.2 nm and R = 5.1 nm. For both cases, we fit the data to
Eq. 16 with only the correction factor we introduced, ψ, as the fitting parameter. In Fig. S10,
the coefficient of determination (r2) obtained during curve fitting is plotted as a function of ψ.
For both cases, that value of ψ which maximised r2 is chosen to plot the red curves in Figs.
2(a) and 2(b) of the main Letter.

5 Nanodroplet bouncing on superlyophobic surfaces

Figure S11 shows the ‘bouncing’ of a nanodroplet on top of a superlyophobic surface due to
thermal fluctuations. This effect is more predominant for smaller droplets, as the amplitude
of surface thermal fluctuations are ∼ 1 nm. The bouncing can also be clearly seen in the
supporting video.
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Figure S11: The y coordinate of centre-of-mass of a nanodroplet on a superlyophobic surface
(R = 3.1 nm). Due to surface thermal fluctuations, the droplet ‘bounces’ up and down on a
superlyophobic surface.
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