Electronic Supplementary Information for

Nitrogen-doping and titanium vacancies synergistically

promote CO₂ fixation in seawater

Di Qu et.al.

Experimental Section

Synthesis of $NTC-V_{Ti}$

For the preparation of the NTC-VTi catalyst, Ti_3C_2 Mxene was firstly synthesized according to our previously reported work (*J. Mater. Chem. A* 2020, 8, 8913–8919). Subsequently, 50 mg the prepared Ti_3C_2 Mxene sample was annealed under an NH3 atmosphere in a quartz pipe furnace at 500 °C for 2 h with a heating rate of 5 °C min⁻¹ to obtain the NTC-V_{Ti} sample.

Characterizations

XRD patterns were performed by an X-ray diffractometer (SmartLab 9kW) at a scan rate of 1° min⁻¹ from 5 to 70°. The N₂-sorption isotherms and pore size distribution curves for the $(VO)_2P_2O_7$ nanosheets were obtained by the Brunauer–Emmett–Teller (BET) measurement with an Autosorb-iQ-MP Micromeritics analyzer. The field-emission-gun SEM instruments (Quanta FEG 250 and Verios 460L of FEI) were applied in the SEM characterization. TEM and EDS images were achieved via TEM instruments, namely JEOL JEM-2100 and FEI Talos F200X. XPS results were recorded by a Kratos AXIS Ultra DLD system with the Al K α radiation as the X-ray source. Meanwhile, the C 1s peak has been fixed at the binding energy of 284.8 eV.

Electrochemical measurements

All the electrochemical experiments were performed in a gas-tight H-cell separated by a Nafion N117 membrane using an electrochemistry workstation (CHI760E Shanghai Chenhua Instrument Co.). The working electrodes were catalysts-coated carbon paper ($1 \times 1 \text{ cm}$) with a loading of 0.2 mg cm⁻². The Ag/AgCl (saturated with KCl) and graphite rod were used as the reference electrode and counter electrode, respectively. The electrochemical experiments were carried out in seawater at room temperature (25 °C) and under atmospheric pressure. Before every experiment, the electrolyte of the cathodic compartment of the cell was purged with CO₂ (99.99%) for 10 min to obtain a CO₂-saturated solution. During the electrolysis, CO₂ was continuously bubbled into the catholyte with a flow rate of 20 sccm. LSV curves were performed at a sweep rate of 10 mV s⁻¹. Electrochemical impedance spectroscopy (EIS)

measurements were performed using the CHI 760E electrochemical workstation in seawater under an open-circuit potential in the frequency range from 10^{-1} to 10^{5} Hz with an alternating current (AC) voltage amplitude of 5 mV. All initial data has been corrected by *i*R compensation, and the potential value was calculated according to the following equation:

$$E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.0591 \times \rm pH + 0.197$$

In the test, the concentration of gaseous samples was measured using on-line gas chromatography (GC, 7890B Agilent) equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD). The liquid products were analyzed through ¹H spectrum using a nuclear magnetic resonance (NMR, AVANCE AV III 400 Bruker) equipment, and DMSO was used as an internal standard for quantification. In the work, no liquid product can be detected.

The Faradaic efficiency (FE) of CO can be calculated by the following equation:

$$FE=(2nC \times V_{CO2} \times 10^{-3} \times t \times F)/22.4Q$$

where *n* is the exchanged electron numbers to CO, *C* is the volume concentration of the gas products, measured by gas chromatography; V_{CO2} is the CO₂ flow rate; *t* is electrolysis time; F is the Faradaic constant (96485 C mol⁻¹); *Q* is the amount of cumulative charge during the CO₂ reduction reaction.

Computational details

Density functional theory (DFT) calculations were performed using the DMol³ code. The Perdew, Burke and Ernzerhof (PBE) exchange-correlation functional within a generalized gradient approximation (GGA) was employed as an exchange-correlation functional. The basis functions were the double numerical plus polarization (DNP) set. The *k*-point sampling of the Brillioun zone was done using a $5 \times 5 \times 1$ grid for geometry optimizations.

Figure S1. AFM image and the corresponding hight profiles of NTC-V $_{\text{Ti}}.$

Figure S2. XPS survey spectrum of TC.

Figure S3. High-resolution XPS spectrum for O 1s of NTC-V_{Ti}.

Figure S4. CO_2RR performance of NTC-V_{Ti} tested in 0.5 M KHCO₃. (a) Polarization curves of NTC-V_{Ti} recorded in N₂- and CO₂-saturated 0.5 M KHCO₃. (b) FE_{co} at different applied potentials.

Figure S5. Charging current density differences plotted against scan rates.

Figure S6. ECSA-corrected current densities versus applied potentials.

Figure S7. EIS spectra of NTC-V_{Ti} and TC.

Figure S8. XRD pattern of NTC-V $_{Ti}$ recorded after the long-term electrolysis.

Figure S9. EPR spectrum of NTC-V_{Ti} taken after the long-term electrolysis.

Figure S10. SEM image of NTC-V $_{\rm Ti}$ taken after the long-term electrolysis.

Figure S11. TEM and HRTEM images of NTC-V_{Ti} taken after the long-term electrolysis. The HRTEM image presents characteristic lattice spacing of 0.2 nm, which can be ascribed to the (018) plane of Ti_3C_2 MXene.

Figure S12. EIS spectra of NTC-V_{Ti} taken before and after the long-term electrolysis. Note that the black pattern is the same as the red one in Figure S7.

Figure S13. CO_2RR polarization curves of NTC-V_{Ti} taken before and after the long-term electrolysis. Note that the blue pattern is the same as the red one in Figure 3a.

Figure S14. Calculated free energy of CO_2RR on NTC and TC-V_{Ti} surfaces.

Catalysts	Electrolyte	FE (%)	<i>j</i> co (mA/cm²)	Potential (V vs. RHE)	Reference					
Noble metal-based catalysts										
Au/Py-CNTs-O	0.1 M KHCO3	93	~6.51	-0.58	ChemSusChem 2019 , 12, 1724					
Pd{310}	0.1 M KHCO3	90.6	~4.53	-0.9	Chem. Eng. Sci. 2019 , 194, 2, 29					
Pd-Ag	0.5 M KHCO ₃	97.3	2.85	-0.7	ACS Sustain. Chem. Eng. 2019, 7, 3536					
Pd nanosheets	0.1 M KHCO3	94	~2.82	-0.5	Angew. Chem. Int. Ed. 2018 , 57, 11544					
Cu-Ag	0.5 M KHCO ₃	95.7	9.5	-0.8	ACS Appl. Mater. Interfaces 2018, 10, 43650					
Au/Cu nanoparticles	0.1 M KHCO3	~94	~3.29	-0.8	J. Phys. Chem. C 2018, 122, 27991					
Au-CeOx/C	0.1 M KHCO3	89.1	12.9	-0.89	J. Am. Chem. Soc. 201 7, 139, 5652					
Triangular Ag nanoplates	0.1 M KHCO ₃	96.8	~1.94	-0.86	J. Am. Chem. Soc. 2017, 139, 2160					
Oxygen plasma- treated Ag	0.1M KHCO ₃	90	_	-0.6	Angew. Chem. Int. Ed. 2017, 56, 11394					
Pd icosahedra/C	0.1 M KHCO ₃	91.1	~1.82	-0.8	Angew. Chem. Int. Ed. 2017 , 56, 3594					
Oxide-derived Ag	0.1 M KHCO ₃	89	1.02	-0.6	Angew. Chem. Int. Ed. 2016, 55, 9748					
Ag-IO	0.1 M KHCO ₃	80	~29.6	-0.8	Angew. Chem. 2016 , 128, 15508					
3.7 nm Pd nanoparticles	0.1 M KHCO ₃	91.2	~8.20	-0.89	J. Am. Chem. Soc. 2015, 137, 4288					
Ultrathin Au nanowires	0.5 M KHCO ₃	94	8.16	-0.35	J. Am. Chem. Soc. 2014 , 136, 16132					
Ag foam	0.5 M KHCO ₃	99.5	0.02	-0.3	ACS Catal. 2018, 8, 8357					
Au-2D	0.1 M KHCO ₃	87.4	2.4	-0.5	Nano Lett. 2019 , 19, 9154					
Ag_{DP8h}	0.1 M NaHCO _{3aq}	98.5	4.4	-0.5	ACS Sustainable Chem. Eng. 2019, 7, 6352					
Au/C_3N_4	0.5 M KHCO ₃	90	2.56	-0.45	ACS Catal. 2018, 8, 11035					
Ag@AgCl _x CSNW	0.5 M KHCO ₃	90	1.79	-0.46	ACS Appl. Energy Mater. 2019, 2, 6163					
Nanoporous Ag	seawater	~93 (less than 3h)		-1.2 (vs	J. Mater. Chem. A, 2018 , 6, 23301					

Table S1. HER electrocatalysis results of this work and those reported in the literature.

				Ag/AgCl)			
	Non-noble metal-based catalysts						
NTC-V _{Ti}	seawater	92 (40 h kept 100%)	~16.2	-0.7	This work		
DHPC	seawater	~92% (10 h kept 68%)	_	-0.7	J. Mater. Chem. A 2020 , 8, 1205		
Fe ³⁺ -N-C	0.5 MKHCO ₃	90	94	-0.45	Science 2019 , 364, 1091		
Cu-In	0.1 M KHCO3	91	4.1	-0.95	Electrochim. Acta, 2019 , 295, 584		
In ₂ Se ₃ nanosheets	0.1 M KHCO ₃	89	~15.4	-0.7	Electrochem. Commun. 2019, 103, 127		
Zn P-NS	0.1 M KHCO3	90	~6.75	-1.0	Adv. Energy Mater. 2019 , 1900276		
MnO ₂	0.1 M KHCO3	71	~12	-0.95	Inorg. Chem. 2019, 58, 8910		
Hexagonal Zn	0.5 M KHCO ₃	85.4	_	-0.95	Angew. Chem., Int. Ed. 2016, 55, 9297		
Cu fibers	0.3 M KHCO ₃	75	~9	-0.40	Nat. Commun. 2016, 7, 10748.		
Cu–In alloy	0.1 M KHCO3	85	~0.64	-0.60	Angew. Chem., Int. Ed. 2015, 54, 2146.		
Zn dendrite	0.5 M NaHCO ₃	79	_	-1.1	ACS Catal. 2015, 5, 4586		
Fe-CNPs	1.0 M KHCO ₃	98.8	_	-0.58	ACS Catal. 2019, 9, 11579		
Ni-N-AC	0.1 M KHCO ₃	94.8	3.0	-0.8	J. Phys. Chem. C 2020 , 124, 1369		