Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Nonlinear Optical ASnX (A = Na, H; X = N, P) Nanosheets with Divalent Tin Lone Electron Pair Effect by First-Principles Design

Shengzi Zhang, ac Lei Kang *a and Zheshuai Lin *ab

^a Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

List of Content

- Table S1 Experimental and calculated crystallographic data of ZnGeP₂ and NaSnX (X = N, P). It can be found that the LDA results are sufficiently accurate for the calculations of lattice constants.
- 2. Figure S1. First-principles analysis of electron localization function (ELF) for NaSnN.
- **3.** Table S2. Detailed VE and VH contribution to the total SHG coefficient d_{ijk} as shown in Figure 3.
- **4.** Figure S2. Crystal structures (a), band structures (b) and PDOS (c) of the NaSnN bilayer, tri-layer and multi-layer (e.g., 5L)
- Figure S3. Phonon vibration spectra of HSnN monolayer (ML) (a), 15%-strained NaSnN ML (b), NaSnP ML (c) and HSnP ML (d).
- 6. Figure S4. Interaction energies of HSnN, NaSnP and MoS₂ with respect to the interlayer distance.

			a=b (Å)	(relative	c (Å)	(relative
			error)		error)	
ZnGeP ₂	Exp.		5.465		10.711	
	Cal.	by LDA	5.387 (-1.4%)		10.496 (-2.0%)	
	Cal.	by sX-	5.270 (-3.6	5%)	10.342 (-	3.4%)
		LDA				
NaSnN	Exp.		3.331		10.892	
	Cal.	by LDA	3.201 (-3.9	9%)	10.773 (-	1.1%)
	Cal.	by sX-	3.176 (-4.7	'%)	10.774 (-	1.1%)
		LDA				
NaSnP	Exp.		3.880		11.667	
	Cal.	by LDA	3.775 (-2.7	′%)	11.602 (-	0.6%)
	Cal.	by sX-	3.795 (-2.2	.%)	11.664 (-	0.0%)
		LDA				

1. Table S1 Experimental and calculated crystallographic data of ZnGeP₂ and NaSnX (X = N, P). It can be found that the LDA results are sufficiently accurate for the calculations of lattice constants.

2. Figure S1. First-principles analysis of electron localization function (ELF) for NaSnN.

3. Table S2. Detailed VE and VH contribution to the total SHG coefficient d_{ijk} as shown in Figure 3.

System			d _{ijk} (pm/V)	VE (pm/V)	VH (pm/V)
NaSnN	Bulk	Cal.	d ₃₃₃ =27	d ₃₃₃ =18	d ₃₃₃ =9.4
HSnN	ML	Cal.	d ₁₁₁ =147	d ₁₁₁ =256	d ₁₁₁ =-108
NaSnN	ML ^{a)}	Cal.	d ₁₁₃ =301; d ₃₃₃ =277	d ₁₁₃ =259; d ₃₃₃ =395	d ₁₁₃ =42; d ₃₃₃ =-118
NaSnP	Bulk	Cal.	d ₃₃₃ =16	d ₃₃₃ =6.7	d ₃₃₃ =9.7
NaSnP	ML	Cal.	d ₁₁₃ =618; d ₃₃₃ =533	d ₁₁₃ =565; d ₃₃₃ =662	d ₁₁₃ =54; d ₃₃₃ =-130
HSnP	ML	Cal.	d ₁₁₁ =12; d ₃₃₃ =-14	d ₁₁₁ =43; d ₃₃₃ =-9.4	d ₁₁₁ =-31; d ₃₃₃ =-4.8
^{a)} strain is 15%					

4. Figure S2. Crystal structures (a), band structures (b) and PDOS (c) of the NaSnN bilayer, tri-layer and

multi-layer (e.g., 5L)

5. Figure S3. Phonon vibration spectra of HSnN monolayer (ML) (a), 15%-strained NaSnN ML (b), NaSnP ML (c) and HSnP ML (d).

6. Figure S4. Interaction energies of HSnN, NaSnP and MoS₂ with respect to the interlayer distance.

