Micro Cell Vesicle Technology (mCVT): A Novel Hybrid System of Gene Delivery for Hard-To-Transfect (HTT) Cells

Yi-Hsuan Ou^{+a}, Shui Zou^{+a}, Wei Jiang Goh^{a,b}, Suet Yen Chong^{c,d}, Gopalakrishnan Venkatesan^a, Matthias G. Wacker^a, Gerrit Storm^c, Jiong-Wei Wang^{*c,d,e}, Bertrand Czarny^{*f}, Giorgia Pastorin^{*a,b}, Esther C. Y. Woon^{*}

Supporting Information

Table S1	. Examples	of current	non-viral	transfection	methods ¹⁻³
----------	------------	------------	-----------	--------------	------------------------

	Technologies	Mechanism	Advantages	Disadvantages	Ref
	Cationic lipid based	Forming a complex (lipoplex) with	• Numerous commercially available products	Cytotoxicity	4,5
	Eg. Lipofectamine	DNA, which enters the cells via	• Applicable to many cell types	Variable transfection efficiency	
	Transfectin, cationic liposomes	endocytosis	• Easy procedures	• Unable to target specific cells	
				• Mostly Inhibited in the presence of serum.	
	Cationic polymer based	Forming a complex (polyplex) with	• Numerous commercially available products	High cytotoxicity	5,6
ds	Eg. Denderimer, polyamine	DNA, which enters the cells via	• Applicable to many cell types	Variable transfection efficiency	
		endocytosis	• Fully tunable structure	• Unable to target specific cells	
letho			• Easy procedures		
al N	Calcium phosphate mediated	Forming an insoluble precipitate	Easy procedures	Low transfection efficiency	7,8
amica		with DNA, which enters the cells via	Lower cytotoxicity	• Unable to target specific cells	
Che		endocytosis	• Low cost		
	Peptide mediated	Forming a peptide-DNA complex,	Lower cytotoxicity	Low transfection efficiency	9,10
	Eg. Cell penetrating peptides,	which may enter the cells via	• Potential targeting ability (if cell specific	Poor endosomal escape	
	cell targeting peptides	endocytosis or direct membrane	targeting peptides is used)	Unable to protect DNA against nucleases	
		translocation			
	Magnetic beads mediated	DNA is associated with magnetic	High transfection efficacy	Difficult to transfect suspension cells	1112
Methods		beads and magnetic force is used to	• Targeting ability		
		direct the beads towards the cells.			
cal	Electroporation	Electric current is used to	High transfection efficacy	Difficult to transfect suspension cells	12
hysi		temporarily destabilize the cell		• Tendency for excessive cell death	
		membrane, which created pores for		• Required for cell dependent optimization of	
		DNA to enter the cells.		procedures and parameters	

 Table S2. Transfection efficiency of HTT with plasmids

using commercially available reagents

Cells	Transfection methods	Transfection efficiency	Ref
3T3-L1	Cationic lipids	> 10%	13
	Cationic polymers	~ 35%	14
U937	Cationic lipids	< 30%	15
Jurkat cells	Cationic lipids	< 30%	15
HUVEC	Cationic lipids /polymers	~ 30-50%	16
Embryonic fibroblast	Cationic lipids/polymer	< 30%	17
Embryonic Stem cells	Cationic lipids	~ 20-25%	18,19

Table S3. Formulations for the proof-of-fusion assay and optimization. The optimized formulation \mathbf{c} is in bold. The formulation was chosen based on the size and protein retention of produced mCVTs.

Formulations	Components	Amount of DOTAP (mg)	Number of CG _{3T3-L1}
а	DOTAP liposome	2.5	-
b	mCVT 0.5x	2.5	$0.5 imes 10^7$
c	mCVT 1x	2.5	1 × 10 ⁷
d	mCVT 2x	2.5	2×10^7
e	DOTAP (cells)	2.5	1×10^7 cells
f	CG 1x	-	1×10^7

Figure S1. Example histogram of the size distribution of (A) DOTAP Liposomes and (B) mCVT_{3T3-L1.}

В

Α

Figure S2. Zeta potential of mCVT_{3T3-L1} with different amount of plasmid DNA.

Figure S3. Transfection efficiency of 3T3-L1 cells and their respective cell viability after 24h post-treatment with various doses of mCVTs

Figure S4. The effect of serum for transfection of 3T3-L1. 3T3-L1 cells were transfected with mCVTs with and without serum at 24 h, 48 h and 72 h, respectively. Both (a) transfection efficiency and (b) cell viability were recorded. Data represented means \pm SD (n=3). * P < 0.1, *** P < 0.001.

Figure S5. Transfection efficiency of 3T3-L1 and HEK293 (measured at 24h post-transfection) with mCVTs from respective cell lines.

Figure S6. Transfection efficiency and cell viability of HaCaT using mCVTs from 3T3-L1 CGs, compared to commercially available transfection reagent, LF3000. n.d. indicated as not detectable, ** indicated p<0.01, *** indicated p<0.001.

Reference

1 T. K. Kim and J. H.E berwine, Anal. Bioanal. Chem., 2010, 397, 3173–3178.

2 A. Gigante, M. Li, S. Junghänel, C. Hirschhäuser, S. Knauer and C. Schmuck, *Cite this Med. Chem. Commun*, 2019, **10**, 1692.

3 L.Kaestner, A. Scholz and P. Lipp, *Bioorganic Med. Chem. Lett.*, 2015, 25, 1171–1176.

4 O. Paecharoenchai, N. Niyomtham, A. Apirakaramwong, T. Ngawhirunpat, T. Rojanarata,

B. E. Yingyongnarongkul and P. Opanasopit, AAPS PharmSciTech, 2012, 13, 1302–1308.

5 L. Zhu and R. I. Mahato, *Expert Opin. Drug Deliv.*, 2010, 7, 1209–1226.

6 N. Zavradashvili, C. Sarisozen, G. Titvinidze, G. Otinashvili, T. Kantaria, D. Tugushi, J. Puiggali, V. P. Torchilin and R. Katsarava, *ACS Omega*, 2019, **4**, 2090–2101.

L. Guo, L. Wang, R. Yang, R. Feng, Z. Li, X. Zhou, Z. Dong, G. Ghartey-Kwansah, M.
M. Xu, M. Nishi, Q. Zhang, W. Isaacs, J. Ma and X. Xu, *Saudi J. Biol. Sci.*, 2017, 24, 622–629.

8 S. Chernousova and M. Epple, *Gene Ther.*, 2017, 24, 282–289.

9 R. K. Thapa and M. O. Sullivan, Curr. Opin. Biomed. Eng., 2018, 7, 71–82.

T. Bettinger, R. C. Carlisle, M. L. Read, M. Ogris and L. W. Seymour, *Nucleic Acids Res.*,
2001, 29, 3882–3891.

11 Y. Wang, H. Cui, K. Li, C. Sun, W. Du, J. Cui, X. Zhao and W. Chen, *PLoS One*, 2014, **9**, e102886.

12 S. Mehier-Humbert and R. H. Guy, Adv. Drug Deliv. Rev., 2005, 57, 733–753.

13 S. Shimba, Methods Mol. Biol., 2008, 456, 249–257.

F. Carlotti, M. Bazuine, T. Kekarainen, J. Seppen, P. Pognonec, J. A. Maassen and R. C.Hoeben, *Mol. Ther.*, 2004, 9, 209–217.

15 N. Andronikou, X. Yu, J. Wei, M. Sridharan, R. Quintanilla, U. Lakshmipathy, P. Welch and X. DeMollerat Du Jeu, *Lipofectamine* ® *3000-efficient, reproducible transfection for biologically-relevant cell models*, 2015, ThermoFisher Scientific.

M. A. Hunt, M. J. Currie, B. A. Robinson and G. U. Dachs, *J. Biomol. Tech.*, 2010, 21, 66–
72.

17 M. Lee, K. Chea, R. Pyda, M. Chua and I. Dominguez, J. Biomol. Tech., 2017, 28, 67–74.

U. Lakshmipathy, B. Pelacho, K. Sudo, Jonathan L. Linehan, E. Coucouvanis, Dan S. Kaufman and Catherine M. Verfaillie, *Stem Cells*, 2004, 22, 531–543.

19 S. Tan, Z. Tao, S. Loo, L. Su, X. Chen and L. Ye, *Sci. Rep.*, 2019, 9, 1–11.