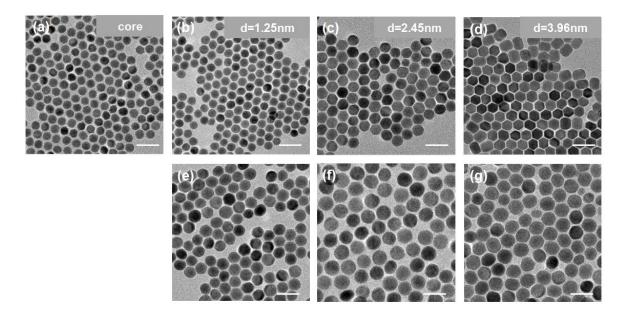
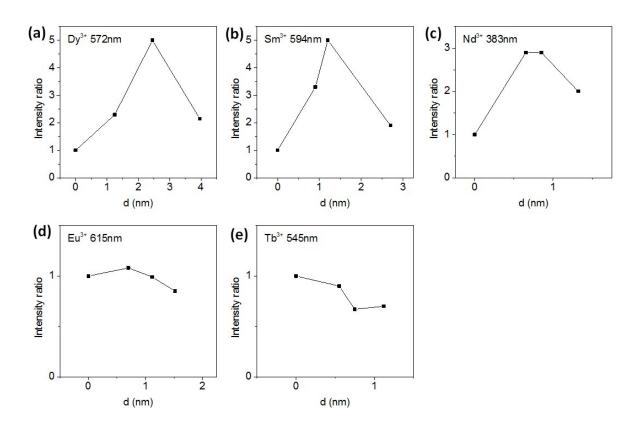
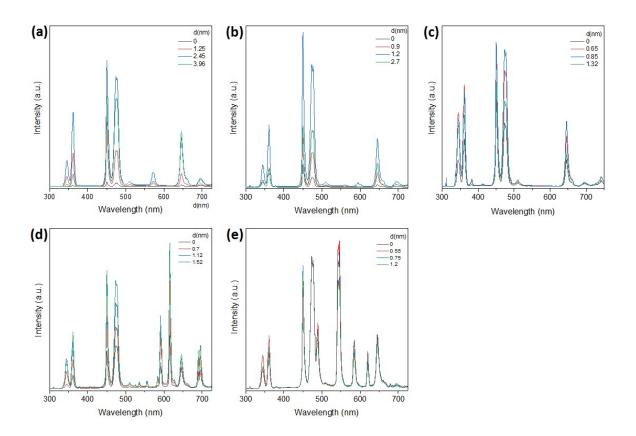

Supporting Information

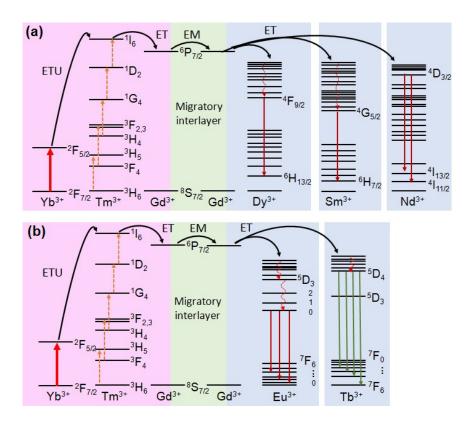
Enhancing energy migration upconversion through migratory interlayer in core-shell-shell nanostructure towards latent fingerprinting

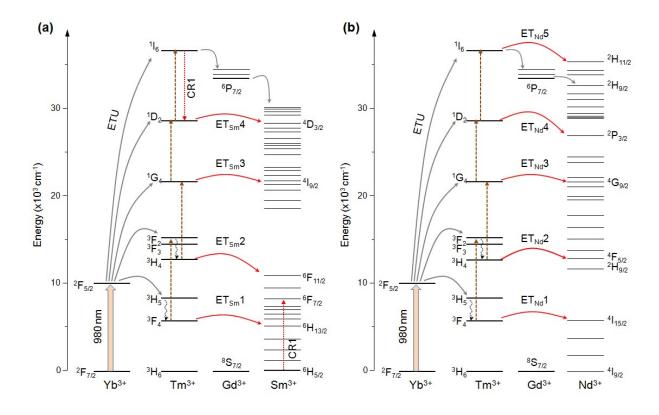

Xixi Wang,^a Long Yan,^a Songbin Liu,^a Peng Zhang,^a Rong Huang,^a and Bo Zhou^{a,*}

^a State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.


**E-mail: zhoubo@scut.edu.cn*


Figure S1. TEM images of the samples with a fine tuning of the NaGdF₄ interlayer thickness for various emitters: (a) Sm³⁺, (b) Nd³⁺, (c) Eu³⁺ and (d) Tb³⁺ in the outermost shell. The corresponding interlayer thickness "d" is given in the images. Scale bars, 50 nm.


Figure S2. TEM images of NaGdF₄:Yb/Tm@NaGdF₄@NaGdF₄:Dy core-shell-shell nanoparticles with NaGdF₄ thickness of (b) 1.25 nm, (c) 2.45 nm, (d) 3.96 nm and their resultant core-shell-shell nanoparticles (e-g), respectively. Note that (a) shows the NaGdF₄:Yb/Tm core seeds for comparison. Scale bars, 100 nm.


Figure S3. (a-e) Dependence of the typical upconversion emission intensity of (a) Dy^{3+} (572 nm), (b) Sm^{3+} (594 nm), (c) Nd^{3+} (383 nm), (d) Eu^{3+} (615 nm) and (e) Tb^{3+} (545 nm) on interlayer thickness for the NaGdF₄:Yb/Tm@NaGdF₄@NaGdF₄:A (A=Dy, Sm, Nd) coreshell-shell nanoparticles under 980 nm excitation, respectively.

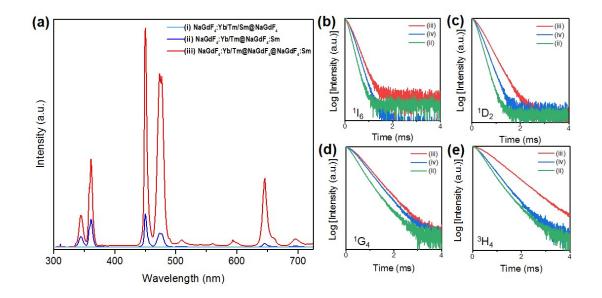

Figure S4. (a-e) Upconversion emission spectra recorded from the NaGdF₄:Yb/Tm@ NaGdF₄@NaGdF₄:A (A=Dy³⁺, Sm³⁺, Nd³⁺, Eu³⁺, Tb³⁺) core-shell-shell nanoparticles under 980 nm excitation.

Figure S5. (a,b) Schematic of total energy transport process for photon upconversion in the NaGdF₄:Yb/Tm@NaGdF₄@NaGdF₄:A (A=Dy³⁺, Sm³⁺, Nd³⁺, Eu³⁺, Tb³⁺) core-shell-shell nanoparticles under 980 nm excitation.

Figure S6. Schematic of possible quenching processes bewteen Tm³⁺ and the emitters of (a) Sm³⁺ and (b) Nd³⁺ at interfacial region in the NaGdF₄:Yb/Tm@NaGdF₄:A (A=Sm, Nd) coreshell nanoparticles under 980 nm excitation. Note that only the leading energy levels of the emitters are marked. ET_{Sm}1: Tm³⁺ (³F₄) → Sm³⁺ (⁶H_{13/2}), ET_{Sm}2: Tm³⁺ (³H₄) → Sm³⁺ (⁶F_{11/2}), ET_{Sm}3: Tm³⁺ (¹G₄) → Sm³⁺ (⁴I_{9/2}), ET_{Sm}4: Tm³⁺ (¹D₂) → Sm³⁺ (⁴D_{3/2}), CR1: [Tm³⁺ (¹I₆); Sm³⁺ (⁶H_{5/2})] → [Tm³⁺ (¹D₂); Sm³⁺ (⁶F_{7/2})]; ET_{Nd}1: Tm³⁺ (³F₄) → Nd³⁺ (⁴I_{15/2}), ET_{Nd}2: Tm³⁺ (³H₄) → Nd³⁺ (⁴F_{5/2},²H_{9/2}), ET_{Nd}3: Tm³⁺ (¹G₄) → Nd³⁺ (⁴G_{9/2}), ET_{Nd}4: Tm³⁺ (¹D₂) → Nd³⁺ (²P_{3/2}), ET_{Nd}5: Tm³⁺ (¹I₆) → Nd³⁺ (²H_{11/2}).

Figure S7. (a) Upconversion emission spectra of (i) NaGdF₄:Yb/Tm/Sm@NaGdF₄ and (ii) NaGdF₄:Yb/Tm@NaGdF₄:Sm core-shell and (iii) NaGdF₄:Yb/Tm@NaGdF₄@NaGdF₄:Sm core-shell-shell nanoparticles under 980 nm excitation. (b-e) The decay curves of Tm³⁺ at its ¹I₆ (at 350 nm), ¹D₂ (at 362 nm), ¹G₄ (at 475 nm) and ³H₄ (at 803 nm) states for the (iv) NaGdF₄:Yb/Tm@NaGdF₄ and (ii) NaGdF₄:Yb/Tm@NaGdF₄:Sm core-shell and (iii) NaGdF₄:Yb/Tm@NaGdF₄:MaGdF₄:Sm core-shell and (iii) NaGdF₄:Yb/Tm@NaGdF₄:Sm core-shell and (iii) NaGdF₄:Sm core-shell and (iii) NaGdF₄