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Fig. S1 Deformation charge density of Me-graphene (isosurface is 0.03 e/Bohr3) 
 

The deformation charge can unveil the bonding degree with its value, larger and thicker 
density distribution in yellow color (electron density increase zone) indicates high bonding 
degree that introduced by delocalized π bond with existence of the highly localized σ 
bonding. The similar density over all sp2 carbon (blue circle) indicates the widely delocalized 
π bond, while the bonding of sp3 carbon (red circle) is the highly localized σ bonding, which 
has smaller density cloud volume with same isosurface. Note that the electron density 
decease zone (in blue color indeed) is too small to see with setting of isosurface of 0.03 
e/Bohr3. 
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Fig. S2 Structure details of Me-graphene 

 

Fig. S3 ELF of Me-graphene: (a) slice at different positions, (b) with different isosufaces 
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Fig. S4 Snapshot of structure (Top view and side view) of Me-graphene at temperature of (a) 
3500K and (b) 4000 K after 5ps BOMD simulation. 
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Fig. S5 (a) The illustration of Poisson’s ratio distribution in different directions in x-y plane of 
Me-graphene. (The gray angle region represents negative value while the green angle 
regions represent positive value. And the blue arrow is the specified direction θ.) (b) The 
variation of Poisson’s ratio (ν) value in different directions (represented by angle θ, vs. axis a) 
in x-y plane of Me-graphene. Duo to the limitation of symmetry, only two concise angle 
regions (0-45 degree and 45-90 degree, respectively) with a total angle region ranging from 
0 to 90 degree are shown.  

 

Direction-depended Poisson’s ratio calculation. The value of ν(θ) can be calculated via 

equations reported in previous work1 as listed as below: 

ν(𝜃) =
(νxycos4𝜃−d1cos2𝜃sin2𝜃+νxysin4𝜃)

(cos4𝜃+d2cos2𝜃sin2𝜃+d3sin4𝜃)
，                               (ES1) 

where，θ is the included angle between axis x (here, axis x is corresponding to axis a while 
axis y is axis b in Me-graphene) and specified direction θ to apply strain, and νxy, d1, d2 and d3 

are defined as: 

νxy = C21/C22 = C12/C22,                                                (ES2) 

d1 =
C11

C22
+ 1 −

C11C22−𝐶12
2

C22C66
                                             (ES3) 

d2 = −(2
C12

C22
−

C11C22−𝐶12
2

C22C66
)                                           (ES4) 

d3 =
C11

C22
                                                           (ES5) 

Here, the C11, C22, C12 and C66 are 210, 210, -0.4, and 103 N/m, respectively. The calculated 
value of ν(θ) is ν(θ = 0° ) = -0.002, ν(θ = 12.5°) = 0, ν(θ = 45°) = 0.009, ν(θ = 77.5°) = 0 and ν(θ 
= 90° ) = -0.002. In the concise angle region (0 to 45 degree), the angle interval with negative 
value is from 0 to 12.5 degree (as 27.8 % for full directions in x-y plane), while the angle 
interval with positive value is from 12.5 to 45 degree (as 72.2 % for full directions in x-y 
plane). And there is one ideal ZPR at θ = 12.5° for one concise angle region. More important, 
all values are less than |0.01|, suggesting the highly near ZPR in Me-graphene. 
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GW calculation. The GW calculations were carried out in the framework of DFT-GW scheme 
by VASP package with the projector-augmented wave method (PAW) and the Perdew-Burke-
Ernzerhof (PBE) exchange correlation functional. This GW calculations were performed in a 
partially self-consistent way (the so-called GW0 approach).2 In order to obtain the accurate 
GW band gaps, it is vital to carefully examine the convergence of the quasiparticle bands in 
the GW calculations.  

To test the GW method is computed correctly with reasonable output, the silicon bulk has 
been checked, of which the GW band gap of silicon (k: 8×8×8, two atoms in unit cell, empty 
band number was 36 (NBANDS = 40), the energy cutoff for the response functions was 150 
eV) has been calculated to be 1.09 eV, well agreed with the experiment result (1.1 eV)3. 

For 2D system, generally, GW band gap is affected by empty band number (N), k-points 
(n×n) and the separation distance (Lz) in computation. 

However, as well known, GW calculation is highly expensive to cost computation resource, 
especially its ultra-high memory occupation. To obtain an acceptable band gap with 
reasonable accuracy within limited computation resource, several approximations are 
applied: (a) The GW calculations were performed in a partially self-consistent way (GW0 
approach) to cut down the computation cost; (b) Since the GW band gap (GWBG) converges 
as 1/Lz,

4,5 a limit gap can be extrapolated with the infinite Lz, of which Lz of 10, 12, 15, 20, 25 
Å are applied; (c) the ratio of band gap to k-points grid, GWBG(dense k-point)/GWBG(low k-
point), possess same convergence limit for different Lz. 

 

Fig. S6 GW0 band gap depended on Lz to extrapolate the bang gap limit (k: 4×4×1) 

First, we have tested some convergences: (i) the energy cutoff for the response functions 
was set to be 150 eV (ΔEg = 0.007 eV, vs. 300 eV); (ii) empty band number (N) was set to be 
214 (NBANDS = 240); (iii) k-point is 20×20×1 (ΔEg = 0.008 eV, vs. 18×18×1). Based on (b), 
GWBG with different Lz in low k-ponit (4×4×1) is carried out to extrapolate the bang gap 
limit for low k-point situation with a limit GW Eg of 2.43 +/- 0.037 eV, as shown in Fig. S6. 
Then, based on (c), the GWBG(dense k-point)/GWBG(low k-point) convergence limit is 
extrapolated, as shown in Table S1.  
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Table S1. GW band gap value depended on Lz (Å) and k-points. (N=54, NBANDS = 80) 

 Lz=10 Lz=12 Lz=15 Lz=20 

4×4 1.853 1.936 2.041 2.170 

6×6 1.691 1.746 1.821 1.963 

8×8 1.645 1.697 1.762 1.878 

10×10 1.622 1.684 1.757 -* 

Eg(6×6)/Eg(4×4) 0.913 0.902 0.892 0.905 

Eg(8×8)/Eg(4×4) 0.888 0.876 0.863 0.865 

Eg(10×10)/Eg(4×4) 0.876 0.870 0.861 -* 

* Failure occurred due to computer memory limit. 

As shown in Table S1, the GWBG(dense k-points)/GWBG(low k-points) highly converges to 
a constant with the increase of Lz.  

Thus an equation can be concluded, (as approximation (c)), listed as below: 

𝐸𝑔(𝑘:𝑛×𝑛,𝐿𝑧=𝐼)

𝐸𝑔(𝑘:𝑚×𝑚,𝐿𝑧=𝐼)
=

𝐸𝑔(𝑘:𝑛×𝑛,𝐿𝑧=𝐽)

𝐸𝑔(𝑘:𝑚×𝑚,𝐿𝑧=𝐽)
                                               (ES6) 

Within our computation limit, Lz = 10 Å can be carried out up to k points of 20×20, 

𝐸𝑔(𝑘:20×20,𝐿𝑧=10)

𝐸𝑔(𝑘:4×4,𝐿𝑧=10)
=

𝐸𝑔(𝑘:20×20,𝐿𝑧=∞)

𝐸𝑔(𝑘:4×4,𝐿𝑧=∞)
                                             (ES7) 

Where 𝐸𝑔(𝑘: 20 × 20, 𝐿𝑧 = 10) is 1.511 eV, 𝐸𝑔(𝑘: 4 × 4, 𝐿𝑧 = 10)  is 1.801 eV, 𝐸𝑔(𝑘: 4 ×

4, 𝐿𝑧 = ∞) is 2.43 +/- 0.037 eV. 

And the equation can be adapted as below: 

𝐸𝑔(𝑘:20×20,𝑐=∞)

𝐸𝑔(𝑘:4×4,𝑐=∞)
= 0.839                                                      (ES8) 

Thus, the accurate estimated GWBG of Me-graphene is calculated to be 2.04 +/- 0.03 eV. 

 
Structure change and band gap under biaxial strain: The change of structure and properties 
under biaxial strain ranging from -5% to +5% are investigated. The change of band lengths 
and bond angle is shown in Fig. S7. Among them, dz2 (height difference in direction z) change 
outstandingly in the strain range with Δdz2 of 0.45 Å, and the change degree of d1 (the bond 
length between sp3- and sp2- carbon atoms) is much smaller but still secondly obvious with 
Δd1 of 0.14 Å. There is a direct-indirect band gap transition between -3% and -2%, of which 
band gap is direct type (M → M) from -5% to -3% while it is indirect type (Γ → M) from -2% 
to +5%, as shown in Fig. 4b&c in main text. This results from the lowest unoccupied state 
(LUS) at Γ, which is the CBM at 0% strain, is quite sensitive to strain but the highest occupied 
state (HOS) HOS at Γ and the HOS and LUS at M are not, as shown in Fig. 4c in main text. The 
partial charge density distribution of the HOS and LUS at Γ and M are shown in Fig. S8. As 
shown, the LUS at Γ, which mainly contributed by the neighbor C3-pz coupling, is sensitive to 
the change of d3 and dz2. And the dz2 changes quickly under strain to adjust the pz-pz overlap 
from weak at -5% to strong at +5% to sharply shift the energy level. At the meantime, the 
changes of pz-pz coupling of the HOS at Γ, and the HOS and LUS at M are all so slight that the 
strain-sensitive LUS at Γ switches the band gap between direct and indirect conveniently. In 
general, the band gap turns from 2.62/1.60/1.04 (at -5%) to to 1.24/0.54/0.16 eV (+5%) with 
GW0/HSE06/PBE, as shown in Table S2. 
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Fig. S7 Specific bond length and highness change under biaxial strain from -5% to +5% 

 
Table S2. Band gap of Me-graphene under different biaxial strain from -5% to +5%. 

Strain PBE (eV) HSE06 (eV) GW0 (eV) Type 

-5 1.04 1.60 2.62 M→M 

-4 1.04 1.60 2.55 M→M 

-3 1.06 1.62 2.57 M→M 

-2 0.95 1.43 2.49 M→Γ 

-1 0.79 1.25 2.27 M→Γ 

0 0.65 1.08 2.04 M→Γ 

1 0.51 0.94 1.82 M→Γ 

2 0.40 0.80 1.63 M→Γ 

3 0.30 0.69 1.46 M→Γ 

4 0.22 0.61 1.33 M→Γ 

5 0.16 0.54 1.24 M→Γ 
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Fig. S8 The partial charge density of specific state at specific k point. (a) The highest occupied 
state (HOS) and the lowest unoccupied state (LUS) at Γ under biaxial strain of 0% and -3%. (b) 
The HOS and the LUS at M under biaxial strain of 0% and -3%.   
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Exciton binding energy. Ordinary DFT method has no consideration on exciton effects in 
calculation to make their prediction on optical property unreliable. There are ways to 
estimate the exciton binding energy (Eb), including not just computation with consideration 
of the electron-hole interaction, such as GW-BSE,6 but also the relationship between GW 
band gap and exciton binding energy Eb, which are concluded rules by data fitting, even 
some methods highly consisted with GW-BSE on pure data collection. In practice, since the 
GW-BSE calculation is highly expensive in computation resource required harsh hardware 
conditions, low cost and convenient method to obtain reasonable energy with acceptable 
value is strongly desired. 

Based on previous studies,7,8 the exciton binding energy is highly near-linear to their GW 
band gap, Eb = 0.21*Eg(GW0) + 0.40, when the Eg is no less than about 1 eV within forced 
linearly fitting. Thus, the exciton binding energy can conveniently be estimated. For Me-
graphene here, Eg (GW) = 2.04 eV with estimated exciton binding energy Eb of 0.83 eV, that 
the optical band gap of Me-graphene is estimated to be 1.21 eV, comparable to HSE06 value 
(1.08 eV). Based on the narrow difference on optical band gap, the optical properties carried 
out with HSE06 instead of GW-BSE is reasonable and acceptable for Me-graphene, especially 
which is more computation practical.  

 

Carrier mobility calculation. Based on the deformation potential theory of Bardeen and 
Shockley,9,10 the carrier mobility in direction α (α = a(x), b(y)) of each band μα of 2D structure 
is defined as,  

𝜇α =
eℏ3Cα

kBT𝑚α
∗ 𝑚d(Elα)2                                                       (ES9) 

where Cα, kB, T, m*α, and Elα are the elastic constant in direction α, the Boltzmann constant,  
temperature (set as 300 K, here), effective mass in direction α, and deformation potential 
for α, respectively. md is the average of effective mass in direction a and direction b, defined 
as md = (m*am*b)1/2. Deformation potential Elα is defined by Elα = (ΔE)/(Δl/l), where ΔE and 
Δl/l represent the change of band energy and strain in that direction, compared to constant l, 
respectively. And the step Δl/l is 0.2% and strain range is from -0.6% to 0.6% to fitting an 
average Elα. 

Here, only the axial directions are considered, of which direction b is equal to direction a 
in symmetry. The calculated result is shown in Table S3. The effective mass of a (or b) at 
CBM and VBM of Me-graphene (𝑚VBM,𝐚

∗  and 𝑚CBM,𝐚
∗ ) are -0.18 and 0.68 me, respectively. 

The deformation potential 𝐸l,VBM,a and 𝐸l,CBM,a is -0.93 and -7.86 eV, respectively, agreed 

with that the energy level of the CBM is sensitive but the VBM is not. At room temperature 
(300 K), the calculated carrier mobility of 𝜇h and 𝜇e in direction a is 1.60×105 and 157 cm2V-

1s-1, respectively. 

Table S3. Mobility calculation details parameters of hole (h) and electron (e) in direction a 
and b. (Ca= Cb= C11= 210 N/m) 

 
h(a) h(b) e(a) e(b) 

Effective mass (me) -0.18 -0.18 0.68 0.68 

md (me)* 0.18 0.18 0.68 0.68 

El (eV) -0.93 -0.93 -7.86 -7.86 

μ (cm2V-1s-1) 1.60×105 1.60×105 157 157 

* me is the static mass of electron. 



 11 / 15 

 

To understand the contribution to the mobility difference between electron and hole, the 
equation ES9 can be simplified for Me-graphene as below: 

𝜇α ∝  
1

𝑚a
∗2El,a

2                                                                 (ES10) 

The difference of effective mass of 𝑚VBM,𝐚
∗  and 𝑚CBM,𝐚

∗  and deformation potential 

𝐸l,VBM,a and 𝐸l,CBM,a decides the difference of mobility for different carriers.  

For the contribution of effective mass and deformation potential, effective mass part 
((m*)-2) of hole/electron is (1/0.182)/(1/0.682)=14.27 times, while deformation potential part 
(El

-2) of hole/electron is (1/0.932)/(1/7.862)=71.43 times. Thus, the significantly smaller 
effective mass as well as deformation potential of hole than electron results in the 
outstanding difference mobility for carrier hole and electron, as about 103 times. 

Understanding of deformation potential difference between electron and hole. As Fig. S9 
shown, the partial density of VBM locates between atom pairs of (1,2), (3,4), (5,6), and (7,8), 
of which the bond lengths are denoted as d1a (‘a’ represent it parallel to axial a) and d1b (‘b’ 
represent it parallel to axial b) within a typical pz-pz coupling, respectively, while the partial 
density of CBM locates between atom pairs (2,3), (4,5), (6,7), and (8,1), denoted as d2 within 
typical pz-pz coupling/hybridization as well, of which there is position difference in direction z 
between atom pairs of (2,3), (4,5), (6,7), and (8,1), denoted as dz2, which represents the 
highness difference between atoms of each pair. And the dz2 can affect the pz-pz orbital 
overlap (Fig. S9f) as well as bond length do (Fig. S9e). 

Based on the partial density of VBM locates between atom pairs of (1,2), (3,4), (5,6), and 
(7,8), the partial density zone (PDZ) of each pair can be labelled as ne(1,2), ne(3,4), ne(5,6), 
and ne(7,8) with energy of E(ne(1,2)), E(ne(3,4)), E(ne(5,6)) and E(ne(7,8)), respectively, of 
which the total energy of partial density zone of VBM is the summation of all of the pairs, 
listed as below: 

EVBM = E(ne(1,2)) + E(ne(3,4)) + E(ne(5,6)) + E(ne(7,8))                           (ES11) 

Where all PDZs basically determined by the distance between atoms of each pair (d1a or d1b). 
Thus, ES11 can be described as equation listed below: 

EVBM(d1a,d1b) = E(d1a) + E(d1a) + E(d1b) + E(d1b) = 2E(d1a) + 2E(d1b)               (ES12) 

Similarly, the total energy of PDZ of CBM can be described by equation listed as below: 

ECBM = E(ne(2,3)) + E(ne(4,5)) + E(ne(6,7)) + E(ne(8,1))                         (ES13) 

Where, the energy of each PDZ involves not just distance between atoms in each pair 
(denoted as d2) but also the highness difference (denoted as dz2), which can affect the pz-pz 
orbitals overlap in π bonding.  

Thus, ES13 can be described as new equation listed below: 

ECBM(d2,dz2) = E(d2,dz2) + E(d2,dz2) + E(d2,dz2) + E(d2,dz2) = 4E(d2,dz2)              (ES14) 

Where all pairs have the same kind of bond length, the same shape of PDZ as well as the 
same response to the strain in symmetry. 
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Interestingly, due to the linear relationship between PDZ energy of VBM (or CBM) and applied 
strain σa (within narrow range of σa), as shown in Fig. S10a, ECBM and ECBM can be described as: 

EVBM = kVBMσa                                                                    (ES15) 

ECBM = kCBMσa                                                                                                     (ES16) 

Where, the kVBM and kVBM are constant coefficients. 
 

Due to the distance and highness d1a, d1b, d2 and dz2 are all in linear relationship with applied 

strain as well, as shown in Fig. S10b-d, the EVBM(d1a,d1b) and ECBM(d2,dz2) can transform into 

equations listed as below:  

EVBM(d1a,d1b) = 2k1ad1a + 2k1bd1b                                                (ES17) 

ECBM(d2,dz2) = 4k2d2 + 4gz2d2z                                                  (ES18) 

Where, k1a, k1b, k2 is coefficient depended on distance of each atom pair (as well as the C=C bond 
length), and gz2 is depended on the highness difference of each pair.  
 

If we roughly considered the all C=C bond performs similar or same in response, due to their 
close bond length and the high covalence in Me-graphene, there is k1a=k1b=k2 (unified as kπ), then 

EVBM(d1a,d1b) = 2kπ(d1a + d1b)                                                   (ES19) 

ECBM(d2,dz2) = 4kπd2 + 4gz2d2z                                                  (ES20) 

 

Based on the result shown as Fig. S9d, there is 2(Δd1a + Δd1b) ≈ 4Δd2. Thus, the main difference 
between deformation potential of El,VBM,a and El,CBM,a would be 

El,VBM,a – El,CBM,a =ΔEVBM(d1a,d1b)/Δσa - ΔECBM(d1a,d1b)/Δσa = -4gz2(Δd2z/Δσa)         (ES21) 

Based on the deformation potential 𝐸l,VBM,a  and 𝐸l,CBM,a  is -0.93 and -7.86 eV, we can 

conclude that the gz2 is times larger than kπ in value.  
 
Obviously, the outstanding difference of El,VBM,a and El,CBM,a results from the highness-

difference-sensitive pz-pz overlap determined by the significant change of dz2.  
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Fig. S9 (a) Partial density of VBM and (b) CBM; (c) the specific bond length (d1a, d1b, d2) and 
atomic position highness difference (dz2); (d) the change of d1a, d1b, d2, and dz2 under uniaxial 
strain (from -0.6% to +0.6%) to obtain deformation potential; (e) bond length depended 
orbital coupling to form π bond by pz and pz orbitals; (f) inter-atom highness depended 
orbital coupling to form π bond by pz and pz orbitals. 
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Fig. S10 (a) The energy of CBM and VBM under different strain (from -0.6% to +0.6%) to 
obtain deformation potential; (b) The energy of VBM in near-linear relationship with bond 
length change Δda1; (c) The energy of CBM in near-linear relationship with bond length 
change Δd2; (d) The energy of CBM in near-linear relationship with inter-atom highness 
change Δdz2. 

 

Fig. S11 Side views of structure of (a) AA and (b) AB stacking of Me-graphene vdW bulks. 
Black, blue and green balls represents C1, C2 and C3 atom in Me-graphene, respectively. The 
band structure and DOS of (c) AA stacking and (d) AB stacking with DFT+D3. 
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GW calculation of layered bulks. Similar setting to monolayer is applied in bulk structure as 
well, except that the DFT-D3 was considered to treat their interlayered vdW interaction in 
layered bulk. For the two layered bulk structures, the GW0-D3 band gap is estimated to be 
0.76 eV for AA stacking (k-points: 6×6×12) and 0.96 eV for AB stacking (k-points: 6×6×6). 
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