First-principles exploration of superconductivity in MXenes

Supplementary Information

J. Bekaert,¹ C. Sevik,² and M. V. Milošević¹

¹Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

²Department of Mechanical Engineering, Faculty of Engineering, Eskisehir Technical University, 26555 Eskisehir, Turkey

FERMI SURFACES

Figure 1: Calculated Fermi surfaces. Line color shows the calculated Fermi velocity in 10⁶ ms⁻¹.

Figure 2: Calculated Fermi surfaces. Line color shows the calculated Fermi velocity in 10⁶ ms⁻¹.

Figure 3: Calculated Fermi surfaces. Line color shows the calculated Fermi velocity in 10⁶ ms⁻¹.

Figure 4: Calculated Fermi surfaces. Line color shows the calculated Fermi velocity in 10⁶ ms⁻¹.

Figure 5: Calculated Fermi surfaces. Line color shows the calculated Fermi velocity in 10⁶ ms⁻¹.

Figure 6: Calculated Fermi surfaces. Line color shows the calculated Fermi velocity in 10⁶ ms⁻¹.

Figure 7: Calculated Fermi surfaces. Line color shows the calculated Fermi velocity in 10⁶ ms⁻¹.

ELECTRON-PHONON COUPLING – CARBIDES

Figure 8: The isotropic Eliashberg function $\alpha^2 F(\omega)$ and resulting electron-phonon coupling λ .

Figure 9: The isotropic Eliashberg function $\alpha^2 F(\omega)$ and resulting electron-phonon coupling λ .

Figure 10: The isotropic Eliashberg function $\alpha^2 F(\omega)$ and resulting electron-phonon coupling λ .

ELECTRON-PHONON COUPLING – NITRIDES

Figure 11: The isotropic Eliashberg function $\alpha^2 F(\omega)$ and resulting electron-phonon coupling λ .

Figure 12: The isotropic Eliashberg function $\alpha^2 F(\omega)$ and resulting electron-phonon coupling λ .

Figure 13: The isotropic Eliashberg function $\alpha^2 F(\omega)$ and resulting electron-phonon coupling λ .

BAND STRUCTURES – CARBIDES

Figure 14: The band structure of M_2C (M = Cr, Mo, W) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in electrons/Hartree/cell.

Figure 15: The band structure of M_2C (M = V, Nb, Ta) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in electrons/Hartree/cell.

Figure 16: The band structure of M₂C (M = Ti, Zr, Hf) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in electrons/Hartree/cell.

Figure 17: The band structure of Sc₂C with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in electrons/Hartree/cell.

Figure 18: The band structure of M_2N (M = Cr, Mo, W) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in electrons/Hartree/cell.

Figure 19: The band structure of M_2N (M = V, Nb, Ta) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in electrons/Hartree/cell.

Figure 20: The band structure of M₂N (M = Ti, Zr, Hf) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in electrons/Hartree/cell.

PHONON SPECTRUM – CARBIDES

Figure 22: Vibrational spectrum of M_2C (M = Cr, Mo, W) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in states/meV.

Figure 23: Vibrational spectrum of M_2C (M = V, Nb, Ta) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in states/meV.

Figure 24: Vibrational spectrum of M₂C (M = Ti, Zr, Hf, Sc) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in states/meV.

Figure 25: Vibrational spectrum of M_2C (M = Ti, Zr, Hf, Sc) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in states/meV.

PHONON SPECTRUM – NITRIDES

Figure 26: Vibrational spectrum of M₂N (M = Cr, Mo, W) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in states/meV.

Figure 27: Vibrational spectrum of M₂N (M = Cr, Mo, W) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in states/meV.

Figure 28: Vibrational spectrum of M_2N (M = Ti, Zr, Hf, Sc) with and without spin-orbit coupling, along the high-symmetry directions of the hexagonal Brillouin zone. DOS in states/meV.