Supporting Information

Hybrid Transition Metal Nanocrystals-Embedded Graphitic Carbon Nitride

Nanosheets System as Superior Oxygen Electrocatalyst for Rechargeable Zn-Air

Batteries

Wen-Jun Niu^{*}, Jin-Zhong He, Ya-Ping Wang, Qiao-Qiao Sun, Wen-Wu Liu, Lu-Yin Zhang,

Mao-Cheng Liu, Ming-Jin Liu, Yu-Lun Chueh*

Prof. W. J. Niu, J. Z. He, Y.P. Wang, Q.-Q. Sun, Prof. W. W Liu, L. Y. Zhang, and M. C. Liu,

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China.

School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou

730050, P. R. China.

*Email: niuwenjun@lut.edu.cn

M. J. Liu, Prof. Y.-L. Chueh

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan. Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.

*Email: ylchueh@mx.nthu.edu.tw

Electrocatalysts	ORR		OER		D.C
	$E_{l/2}\left(\mathbf{V}\right)$	$E_{\theta}\left(\mathbf{V}\right)$	$E_{j=10}\left(\mathbf{V}\right)$	⊿E (V)	Ket.
Co-N-C _{-0.7}	0.803	0.875	1.67	0.867	This work
Fe-N-C _{-0.7}	0.781	0.887	1.71	0.929	This work
Ni-N-C _{-0.7}	0.765	0.889	1.62	0.855	This work
Co/CoFe ₂ O ₄	0.63	0.77	1.62	0.99	[1]
Mn/Co-N-C-0.02- 800	0.80	_	1.66	0.86	[2]
Ni ₃ Fe-Co ₉ S ₈ /rGO	0.80	_	1.62	0.82	[3]
NDGs-800	0.85	0.98	1.68	0.83	[4]
Co ₂ P/CoN-in-NCNTs	0.85	_	1.65	0.80	[5]
N-HC@G-900	0.65	0.80	1.58	0.93	[6]
C@NCF-900	0.93	_	1.66	0.73	[7]
NiCo/MNC	0.83	_	1.61	0.78	[8]
Fe ₂ Ni ₂ N/Co@NCNT	0.76	_	1.63	0.87	[9]
NB-CN	0.835	_	1.65	0.815	[10]
CoZn-NC-700	0.84	0.98	1.76	0.78	[11]
HNG-900	0.78	_	1.69	0.91	[12]
N-GCNT/FeCo-3	0.92	_	1.73	0.81	[13]
CoNC-CNF-1000	0.8		1.68	0.88	[14]
Co/N-HPC150/800	0.85	_	1.7	0.85	[15]
CoFe-PPy	0.84		1.69	0.85	[16]
CN _x	0.68	—	1.62	0.94	[17]

 $\label{eq:stables} \textbf{Table S1} \ \textbf{A} \ \textbf{summary of various electrocatalysts for ORR and OER performance}.$

Figure S1 TEM images of the (a) bulk g-C₃N₄ and (b) g-C₃N₄ nanosheets.

Figure S2 (a) The EDS element mapping of C, Co, N, and (b) the corresponding spectrum of the Co-CNNs_{-0.7} composites.

Figure S3 XPS survey spectra of the (a) Fe-CNNs_{-0.7}, (b) Co-CNNs_{-0.7}, and (c) Ni-CNNs_{-0.7},

respectively.

CNNs with different Co ions doping, and (c, f) Ni-CNNs with different Ni ions doping in O_2 -

saturated 0.1 M KOH (1600 rpm, 5 mV s⁻¹).

Figure S5 ORR polarization plots of (a) Fe-CNNs_{-0.7}, (b) Co-CNNs_{-0.7}, and (c) Ni-CNNs_{-0.7} catalysts pyrolyzed at different temperatures in O_2 -saturated 0.1 M KOH (1600 rpm, 5 mV s⁻¹).

Figure S6 LSV curves and Koutecky–Levich plots (j^{-1} versus $\omega^{-1/2}$) of (a, b) CNNs, (c, d) Fe-CNNs_{-0.7}, (e, f) Co-CNNs_{-0.7}, (g, h) Ni-CNNs_{-0.7} and (i, g) Pt/C electrodes in O₂-saturated 0.1 M KOH solution at a series of rotation rates from 400 to 2025 rpm with a scan rate of 5 mV s⁻¹.

Figure S7 (a) RRDE voltammograms recorded and (b) Peroxide species yields and electron numbers of CNNs, Fe-CNNs_{-0.7}, Co-CNNs_{-0.7}, Ni-CNNs_{-0.7}, and Pt/C electrodes in O₂-saturated 0.1 M KOH at 1600 rpm.

Figure S8 LSV and Tafel plots of (a, b) Fe-CNNs with different Fe ions doping, (c, d) Co-CNNs with different Co ions doping, and (c, f) Ni-CNNs with different Ni ions doping in O_2 saturated 0.1 M KOH (1600 rpm, 5 mV s⁻¹).

Figure S9 Chronoamperometry responses and the LSV curves before and after 500 CV cycles of the (a, b) Fe-CNNs_{-0.7}, (c, d) Co-CNNs_{-0.7}, as well as (e, f) Ni-CNNs_{-0.7} in O₂-saturated 0.1 M KOH electrolyte (1600 rpm, 5 mV s⁻¹)

Figure S10 Schematic illustration for the preparation of gas diffusion layer, air-cathode loaded with catalysts and the assembly of rechargeable Zn-air battery.

The home-made Zn-air batteries were constructed using a polished Zn plate as the anode, the air electrode composed of nickel foam (0.1 mm), catalytic layer (CL) and gas diffusion layer (GDL) as cathode, and 6 M KOH aqueous solution containing 0.2 M Zn(Ac)₂ as electrolyte. Typically, the CL was fabricated by mixing catalysts (Co-CNNs_{-0.7}), conductive additive (ketjen black and acetylene black) and binder (PTFE, 60 wt.%) uniformly in a weight ratio of 3 : 3 : 1 : 3. While the GDL was fabricated by rolling press the acetylene black, ammonium oxalate and PTFE hybrid slurry in a weight ratio of 2 : 1 : 7. Finally, the total thickness of the air electrode was 0.4 to 0.6 mm after pressed at 10 MPa. Then, the air electrode was dried at 60 °C in a vacuum overnight.

Figure S11 Photograph of the rechargeable Zn-air battery.

Figure S12 Open circuit plots of the rechargeable ZABs with the Co-CNNs_{-0.7} and Pt/C + IrO_2 as catalyst, respectively.

Figure S13 Galvanostatic discharge/charge cycling curves of the ZABs equipped with the Co-CNNs_{-0.7} at 1 mA cm⁻², 5 mA cm⁻² and 10 mA cm⁻², respectively.

References

- [1] Y. Niu, X. Huang, L. Zhao, W. Hu and C. M. Li, One-Pot Synthesis of Co/CoFe₂O4 Nanoparticles Supported on N-Doped Graphene for Efficient Bifunctional Oxygen Electrocatalysis, ACS Sustainable Chem. Eng. 2018, 6, 3556.
- [2] L. Wei, L. Qiu, Y. Liu, J. Zhang, D. Yuan and L. Wang, Mn-Doped Co-N-C Dodecahedron as a Bifunctional Electrocatalyst for Highly Efficient Zn–Air Batteries, *ACS Sustainable Chem. Eng.* 2019, 7, 16, 14180.
- [3] X. Hu, T. Huang, Y. Tang, G. Fu and J. M. Lee, Three-Dimensional Graphene-Supported Ni₃Fe/Co₉S₈ Composites: Rational Design and Active for Oxygen Reversible Electrocatalysis, ACS Appl. Mater. Interfaces 2019, 11, 4028.
- [4] Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li and S. Wang, Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn-Air Batteries, ACS Energy Lett. 2018, 3, 5, 1183.
- [5] Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng, M. Zhou, J. Li, Y. Qiao, S. Mu and Q. Xu, Co₂P-CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for tri-functional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting, *Adv. Funct. Mater.* **2018**, 28, 1805641.
- [6] J. Sun, S. E. Lowe, L. Zhang, Y. Wang, K. Pang, Y. Wang, Y. Zhong, P. Liu, K. Zhao, Z. Tang and H. Zhao, Ultrathin Nitrogen-Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media, *Angew. Chem. Int. Ed.* 2018, 57, 16511.
- [7] G. Nam, Y. Son, S. O. Park, W. C. Jeon, H. Jang, J. Park, S. Chae, Y. Yoo, J. Ryu, M. G.

Kim, S. K. Kwak and J. Cho, A Ternary Ni₄₆Co₄₀Fe₁₄ Nanoalloy-Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc-Air Batteries, *Adv. Mater.* **2018**, 30, 1803372.

- [8] D. Deng, Y. Tian, H. Li, L. Xu, J. Qian, J. Pang, B. Wang, Q. Zhang and H. Li, *J Alloy Compd.* 2019, 797, 1041.
- [9] M. Wu, G. Zhang, J. Qiao, N. Chen, W. Chen, S. Sun, Ultra-long life rechargeable zincair battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts, *Nano Energy* 2019, 61, 86.
- [10] Z. Lu, J. Wang, S. Huang, Y. Hou, Y. Li, Y. Zhao, S. Mu, J. Zhang, Y. Zhao, N,Bcodoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts, *Nano Energy* 2017, 42, 334.
- [11] B. Chen, X. He, F. Yin, H. Wang, D. J. L, R. Shi, J. Chen and H. Yin, MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery, *Adv. Funct. Mater.* 2017, 27, 1700795.
- [12] H. Cui, M. Jiao, Y. N. Chen, Y. Guo, L. Yang, Z. Xie, Z. Zhou and S. Guo, Molten-Salt-Assisted Synthesis of 3D Holey N-Doped Graphene as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries, *Small Methods* 2018, 2, 1800144.
- [13] C. Y. Su, H. Cheng, W. Li, Z. Q. Liu, N. Li, Z. Hou, F. Q. Bai, H. X. Zhang and T. Y. Ma, Atomic Modulation of FeCo-Nitrogen-Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All-Solid-State Zinc-Air Battery, *Adv. Energy Mater.* 2017, 7, 1602420.

- [14] W. Zhang, X. Yao, S. Zhou, X. Li, L. Li, Z. Yu and L. Gu, ZIF-8/ZIF-67-Derived Co-N_x-Embedded 1D Porous Carbon Nanofibers with Graphitic Carbon-Encased Co Nanoparticles as an Efficient Bifunctional Electrocatalyst, *Small* 2018, 14, 1800423.
- [15] F. Dong, C. Liu, M. Wu, J. Guo, K. Li and J. Qiao, Hierarchical Porous Carbon Derived from Coal Tar Pitch Containing Discrete Co-Nx-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries, ACS Sustainable Chem. Eng. 2019, 7, 8587.
- [16] P. Li, Z. Jin, Y. Qian, Z. Fang, D. Xiao and G. Yu, Probing Enhanced Site Activity of Co-Fe Bimetallic Subnanoclusters Derived from Dual Cross-Linked Hydrogels for Oxygen Electrocatalysis, ACS Energy Lett. 2019, 4, 1793.
- [17] K. Mamtani, D. Jain, D. Dogu, V. Gustin, S. Gunduz, A. C. Co and U. S. Ozkan, Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CN_x) in acidic media, *Appl. Catal. B-Environ.* 2018, 220, 88.