Supporting Information

Ultra-high rate capability of nanoporous carbon network@V2O5 sub-micron

bricks composite as a novel cathode material for asymmetric supercapacitors

Yue Jiao,^{‡*a,d} Caichao Wan,^{‡*b} Yiqiang Wu,^b Jingquan Han,^{a,d} Wenhui Bao,^c He Gao,^c

Yaoxing Wang,^c Chengyu Wang,^c Jian Li*c

^aCollege of Materials Science and Engineering, Nanjing Forestry University, Nanjing

210037, PR China

^bCollege of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.

^cMaterial Science and Engineering College, Northeast Forestry University, Harbin 150040, PR China.

^dCo-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.

**E-mails: yjiao123@126.com (Y. Jiao), wancaichaojy@163.com (C. Wan), nefulijian@163.com (J. Li).*

^{\ddagger}Y. Jiao and C. Wan contributed equally to this work and are considered co-first authors.

Outlines

1. Calculation of theoretical specific capacitance of pseudocapacitive nano-size V_2O_5	.S-3
2. Pore characteristic parameters of NCN, V ₂ O ₅ SMBs and NCN@V ₂ O ₅ SMBs (Table S1)	S-4
3. Areal capacitance and rate capability comparisons of NCN@V ₂ O ₅ SMBs (Table S2)	.S-5
4. GCD curve of NCN@V ₂ O ₅ SMBs electrode at 50 mA cm ⁻² (Fig. S1)	. S-6
5. Electrochemical properties of CA V ₂ O ₅ and NCN@CA V ₂ O ₅ (Fig. S2)	. S- 7
References	.S-8

1. Calculation of theoretical specific capacitance of pseudocapacitive nano-size V₂O₅

For pseudocapacitive nano-size V_2O_5 (extrinsic pseudocapacitive materials) [1], under ideal conditions (the extent of fractional coverage of surface or inner structure is 100%), its theoretical capacitance is calculated based on the following equation [1]:

$$C = \frac{nF}{mE} \tag{1}$$

where *n* is the mean number of the electrons transferred in the redox reaction, *F* is the Faraday constant, *m* is the molar mass of the metal oxide and *E* is the operating voltage window. Therefore, when V⁵⁺ is reduced to V⁴⁺ and E = 1 V, the theoretical capacitance is calculated as: (2×96485.3383/1.0/182) F g⁻¹ ≈ 1060 F g⁻¹.

2. Pore characteristic parameters of NCN, V₂O₅ SMBs and NCN@V₂O₅ SMBs

Materials	BET surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)
NCN	459	1.0
V ₂ O ₅ SMBs	1.58	0.013
NCN@V ₂ O ₅ SMBs	19.5	0.089

Table S1. Pore characteristic parameters of NCN, V₂O₅ SMBs and NCN@V₂O₅ SMBs.

3. Areal capacitance and rate capability comparisons of NCN@V2O5 SMBs

Table S2. Areal capacitance and rate capability comparisons of NCN@V2O5 SMBs with some

	2 1		
Electrodes	Maximum areal capacitance/mF cm ⁻²	Rate capability (capacitance retention ratio)	Ref. ^a
Mo-doped V_2O_5 thin film	175.0 (1.0 mA cm ⁻²)	31.1% 1.0 to 2.0 mA cm ⁻² (2 times)	38
V2O5 nanorods/stainless steel	337.6 (0.25 mA cm ⁻²)	62.5% 0.25 to 2.0 mA cm ⁻² (8 times)	39
V ₂ O ₅ -reduced graphene oxide	382.0 (0.11 mA cm ⁻²)	16.2% 0.11 to 1.1 mA cm ⁻² (10 times)	40
Carbon-coated flowery V2O5	417.0 (0.5 mA cm ⁻²)	30.3% 0.5 to 5.0 mA cm ⁻² (10 times)	41
3D N-doped carbon nanofibers/V ₂ O ₅ aerogels	476.1 (0.4 mA cm ⁻²)	33.7% 0.4 to 8.0 mA cm ⁻² (20 times)	42
V ₂ O ₅ -polyaniline	664.5 (0.5 mA cm ⁻²)	63.8% 0.5 to 5.0 mA cm ⁻² (10 times)	43
NCN@V2O5 SMBs	786.4 (0.2 mA cm ⁻²) 744.5 (0.5 mA cm ⁻²) 708.0 (1.0 mA cm ⁻²) 674.6 (2.0 mA cm ⁻²) 645.5 (5.0 mA cm ⁻²)	85.8% 0.2 to 2.0 mA cm ⁻² (10 times) 82.1% 0.2 to 5.0 mA cm ⁻² (25 times) 61.7%	This work
	403.2 (30.0 mA cm ²)	0.2 to 50.0 mA cm ² (250 times)	

recently reported V₂O₅-based electrodes.

^{*a*}Please find these references in the main body of the paper.

4. GCD curve of NCN@V₂O₅ SMBs electrode at 50 mA cm⁻²

Figure S1. GCD curve of the NCN@ V_2O_5 SMBs electrode at 50 mA cm⁻².

5. Electrochemical properties of CA V₂O₅ and NCN@CA V₂O₅

Figure S2. Electrochemical properties of the commercially available V_2O_5 (coded as CA V_2O_5) and its mixture with NCN (coded as NCN@CA V_2O_5) tested in a positive potential range in a three-electrode system. (a-b) GCD curves of CA V_2O_5 at current densities of 0.2–5 mA cm⁻² and its rate performance; (c-d) GCD curves of NCN@CA V_2O_5 at current densities of 0.2–5 mA cm⁻²

and its rate performance.

References

 [1] Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. *Energy & Environmental Science*, 7(5), 1597-1614.