SUPPLEMENTARY INFORMATION

Free carrier enhanced depletion in ZnO nanorods decorated with bimetallic AuPt nanoclusters

R. Bahariqushchi1+, S. Cosentino1+, M. Scuderi2, E. Dumons3, L. P. Tran-Huu-Hue3, V. Strano4, D. Grandjean5, P. Lievens5, G. Poulin-Vitrant3, C. Spinella2, A. Terrasi1,6, G. Franzò1, and S. Mirabella1,6*

1 IMM-CNR, via S. Sofia 64, 95123 Catania, ITALY
2 IMM-CNR, VIII strada 5, 95121 Catania, ITALY
3 GREMAN UMR 7347 CNRS, INSA Centre Val de Loire, Université de Tours, 3 rue de la Chocolaterie, CS 23410, 41034 BLOIS cedex, France
4 BRIT (Bio-nanotechResearchInnovationTower), Università degli Studi di Catania, via S. Sofia 89, 95123 Catania, Italy
5 Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
6 Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania, ITALY

+ Equal contribution, shared first authorship
* corresponding author

Figure S1: Cluster size distribution measured by reflection time of flight spectrometry for gas-phase clusters before deposition on the sample.
Figure S2: Representative high-resolution STEM micrograph used to determine size distribution and distance of Au clusters deposited on ZnO NR surface (a) and size distribution population of Au clusters (b).

Figure S3: RBS spectra of Au, Pt and AuPt clusters deposited on ZnO NRs. The area of the peaks in the 1.75 – 1.9 MeV gives the metal dose (in at/cm²) deposited.

<table>
<thead>
<tr>
<th>Name</th>
<th>Metal dose [E15/cm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuPt1</td>
<td>5.1±0.2</td>
</tr>
<tr>
<td>Pt2</td>
<td>6.5±0.1</td>
</tr>
<tr>
<td>Au3</td>
<td>3.0±0.2</td>
</tr>
</tbody>
</table>
Figure S4: High resolution STEM micrographs for (a) Au and (b) Pt clusters. The measured inter-planar space for (111) planes are indicated.

To get a condition as close to the experimental one as possible we estimated the electric field to be applied to a single NR. The resistance measured for Au sample is about 1 GΩ, which would be that of a NR 10 mm long. If the experimental voltage of 0.8 V was applied to such a NR, the electric field would have been 80 V/m. Thus, a voltage bias of 4×10^{-5} V along the NR axis (500 nm long) is considered for resistance simulation. An equivalent resistance (R_{eq}) for the NR is computed by extracting the current flowing along it, with Au clusters at different spacing values. For a bare ZnO NR the resistance (R_0) results to be 39.8 kΩ, and it increases up to almost 3 times for 10 nm spaced Au clusters.

Figure S5: Simulation of the equivalent resistance of a NR with Au clusters spaced by D.
Figure S6: Numerical fit of the transient photocurrent curves for the pristine [(a) to (c)] ZnO NRs and decorated with AuPt (d), Pt (e) and Au (f) clusters.
Figure S7: XPS spectra of Au and Pt region in decorated samples. Peaks were deconvoluted by taking into account the split-orbit separation of Au4f, Pt4f and Zn3p. Au clusters deposited on ZnO show no sign of oxidation. For Pt and AuPt on ZnO NRs, around 32-35% of the atoms are bonded with oxygen.
Figure S8. PL spectra in the visible region for pristine ZnO NRs and after cluster decoration (a). The two-component Gaussian fit shows that emission states (orange and green) in ZnO are not altered after cluster decoration.