Supplementary information

Modification of Composite Catalytic Material Cu_mV_nO_x@CeO₂ Coreshell Nanorod by Tungsten for NH₃-SCR

Xiaosheng Huang^{a,b}, Fang Dong^a, Guodong Zhang^a and Zhicheng Tang^{a,c*}

(a. State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering

Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, Lanzhou 730000, PR China

b. University of Chinese Academy of Sciences, Beijing 100039, PR China)

c. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

*Corresponding author. Tel.: +86-931-4968083, Fax: +86-931-8277088, E-mail address: tangzhicheng@licp.cas.cn (Z.Tang).

Fig. S1 TG/DTA curves of PVP (K90).

Fig. S2 TEM images of Cu_mV_nO_x samples calcined at different temperatures.

Fig. S3 FTIR spectrum (a) and XRD patterns (b) of Ce-MOF, $Cu_mV_nO_x$ -NF/Ce and $Cu_mV_nO_x$ -NF@Ce-MOF.

Fig. S4 N₂ sorption curves and pore size distribution of all as-prepared catalysts.

Fig. S5 XPS spectra of Cu_mV_nO_y@CeO₂-WO_x calcined at different temperatures.

Table S1 Quantity results of surface acid sites.

Table S2 Peak integration area of pyridine FTIR and NH₃-TPD.

Table S3 XPS results of surface composition

Table S4. Reaction rate constant k of Cu₃(VO₄)₂, CeO₂, Cu₃(VO₄)₂@CeO₂ and

 $Cu_3(VO_4)_2$ @CeO₂-WO_x.

Fig. S1 TG/DTA curves of PVP (K90).

As shown in above TG/DTA curves, the decomposition of PVP (k90) mainly occurred in 290 \sim 410 °C with several exothermic peaks, which implied that the side and main chains were decomposed step by step. All residuum was completely consumed above 663 °C. Above information could provide references for other samples' TG/DTA analyses in text part.

Fig. S2 TEM images of $Cu_mV_nO_x$ samples calcined at 400 °C (a, b), 500 °C (c, d), 600 °C (e, f) and 700 °C (g, h).

Fig. S3 FTIR spectrum (a) and XRD patterns (b) of Ce-MOF, $Cu_mV_nO_x$ -NF@Ce-MOF and $Cu_mV_nO_x$ -NF/Ce.

Fig. S4 N_2 sorption curves (a) and pore size distribution (b) of all as-prepared catalysts.

Fig. S5 XPS spectra of $Cu_mV_nO_y@CeO_2-WO_x$ calcined at different temperatures.

	NH ₃ uptake (mmol/g _{cat})			
samples	Weak acid (<240 °C)	Medium strong acid (>240 °C)	total	
$Cu_3(VO_4)_2$	-	1.15	1.15	
CeO ₂	0.48	-	0.48	
Cu ₃ (VO ₄) ₂ @CeO ₂	-	1.04	1.04	
$Cu_2V_2O_7@CeO_2-WO_x$	0.67	0.88	1.55	
$Cu_3(VO_4)_2@CeO_2-WO_x$	1.30	1.29	2.59	
$Cu_{11}O_2(VO_4)_6@CeO_2-WO_x$	0.65	0.24	0.89	

Table S1 Quantity results of surface acid sites.

Table S2 Peak integration area of pyridine FTIR and NH₃-TPD.

$Cu_3(VO_4)_2$ @CeO ₂ -WO _x	Peak integ	Area ratio		
Pyridine FTIR	Lewis acid	Brønsted acid	0.06.2	
	12.3	11.8	0.90 ^a	
NH ₃ -TPD	Weak acid	Medium strong acid	0.00 h	
	145.2	144.8	0.99 °	

^a the area ratio of Brønsted acid to Lewis acid

^b the area ratio of Medium strong acid to Weak acid

	Cu	V	0	Ce	W	O _a ratio	Ce ³⁺ ratio
$Cu_3(VO_4)_2$	12.42	28.99	58.59	-	-	49.12	-
Cu ₃ (VO ₄) ₂ @ CeO ₂	3.11	20.12	61.97	14.80	-	38.73	19.07
$Cu_2V_2O_7$ (a) CeO_2 - WO_x	2.76	19.95	60.93	10.61	5.75	45.47	19.31
$Cu_3(VO_4)_2$ (CeO_2 - WO_x	2.59	19.37	60.04	12.86	5.14	49.71	21.19
$Cu_{11}O_2(VO_4)_6$ (CeO_2 - WO_x	2.61	20.66	63.15	8.76	4.81	44.59	19.89

Table S3 Catalysts surface composition (%)

Table S4. Reaction rate constant k of $Cu_3(VO_4)_2$, CeO_2 , $Cu_3(VO_4)_2$ @CeO₂ and

$\operatorname{Cu}_3(\operatorname{VO}_4)_2(\operatorname{COO}_2) \operatorname{VO}_x$.					
Temperatur	Reaction rate constant k ($L \cdot g^{-1} \cdot min^{-1}$)				
e (°C)	$Cu_3(VO_4)_2$	CeO ₂	$Cu_3(VO_4)_2@CeO_2$	$Cu_3(VO_4)_2@CeO_2-WO_x$	
100	0.02	0.02	0.03	0.09	
140	0.04	0.03	0.10	0.39	
180	0.07	0.06	0.22	1.02	
220	0.10	0.14	0.42	1.61	

 $Cu_3(VO_4)_2(a)CeO_2-WO_x$