Supplementary Information

Synergistic effect between polyvinyl pyrrolidone and oxygen vacancies on improving oxidase-mimetic activity of flower-like CeO₂ Nanozymes

Mingyun Zhu,^a Yifeng Wen,^a Shugui Song,^a Anqi Zheng,^a Jingcang Li,^a Weiwei Sun,^a Yunqian Dai,^{b,*} Kuibo Yin,^{a,*} Litao Sun,^{a,*} ^aSEU-FEI Nano-Pico Center, Key Laboratorsy of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China ^bSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China

*Address corresponding to: yinkuibo@seu.edu.cn, daiy@seu.edu.cn, and slt@seu.edu.cn

Fig. S1 (a) TEM image, (b) High-resolution STEM image of the one representative CeO_2 nanoflower.

Fig. S2 FTIR spectrum of CeO_2 nanoflowers.

Fig. S3 (a) Optical images and (b) average-size evolutions of nanoflower assemblies and monomers obtained at different solvothermal durations.

Fig. S4 SAED patterns of CeO₂ nanoflowers obtained at different solvothermal durations: (a) 1 h, (b) 8 h, and (c) 24 h. Scale bar: 5 1/nm.

Fig. S5 (a) Optical images, (b) average-size evolutions, and (c-d) SAED patterns of CeO_2 nanoflowers obtained from different precursor concentrations: (c) 27.78 mM, (d) 13.89 mM.

Fig. S6 (a) Optical images, (b) average-size evolutions, and (c–d) SAED patterns of CeO_2 nanoflowers obtained at different reaction temperatures: (c) 120 °C, (d) 200 °C.

Fig. S7 (a) SAED pattern, and (b–c) HRTEM images of CeO₂ nanocubes obtained in the absence of PVP. Inset in (b) is the corresponding optical image.

Fig. S8 (a, d and g) EELS, and (b–c, e–f, and h–i) XPS spectra of a CeO₂ nanoflowers obtained at different conditions: (a–c) at different reaction durations, (d–f) from different precursor concentrations, (g–h) at different solvothermal temperatures. Specifically, EELS for Ce- $M_{5,4}$ edge, and XPS for Ce 3*d* and O 1*s*.

Fig. S9 Oxidation process of TMB.

Fig. S10 TMB-dependent UV-vis absorption spectra of the mixture containing (a) 2 μ mol of 31.1-nm CeO₂ nanoflowers, (b) 0.5 μ mol of 5.6-nm CeO₂ nanocubes, and (c) 2 μ mol of 10.1-nm CeO₂ nanocubes. The concentration of the used TMB is 10 mM.

Fig. S11 UV-vis absorption spectra of the TMB solutions catalyzed by CeO_2 nanoflowers with different $Ce(\mathbb{II})$ percentages.

Fig. S12 UV-vis spectra of TMB solution catalyzed by CeO_2 nanoparticles with different structures. Nanoflowers: 39.8% $Ce(\mathbf{II})$ and 0.93 for M_5/M_4 , nanoparticles: 39.9% $Ce(\mathbf{II})$ and 0.93 for M_5/M_4 .

Fig. S13 XPS spectra for (a) Ce 3d and (b) O 1s of the PVP-free CeO₂ nanocubes.

Fig. 14 The adsorption energy of O_2 on the {220} facet in different configuration models. Green: O atoms within O_2 , red and light yellow: lattice O and Ce atoms within CeO₂.

Fig. 15 The adsorption energy of O_2 (green) on the oxygen-deficient {220} facet in different configuration models. Green: O atoms within O_2 , red and light yellow: lattice O and Ce atoms within CeO₂.

Fig. 16 The adsorption energy of O_2 (green) on the oxygen-deficient {220} facet with the existence of PVP in different configuration models. Green: O atoms within O_2 ; red: O atoms within CeO₂ and PVP; light yellow: lattice Ce atoms with CeO₂; grey, blue and white: C, N and H atoms within PVP

Fig. 17 The adsorption energy of O_2 (green) on the oxygen-deficient {220} facet with the existence of TMB in different configuration models. Green: O atoms within O_2 ; red and light yellow: lattice O and Ce atoms within CeO₂; grey, blue and white: C, N and H atoms within TMB.