Supporting information for

Ion-Specific Clustering of Metal-Amphiphile Complexes in Rare Earth Separations

Srikanth Nayak, Kaitlin Lovering, and Ahmet Uysal *

Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439

*Email: <u>ahmet@anl.gov</u>. Web: <u>www.anl.gov/profile/ahmet-uysal</u>

1. <u>Hard-sphere structure factor</u>:

$$S(Q) = \frac{1}{1 - NC(Q)}$$

$$x = QD$$

$$NC(Q)$$

$$= -24\phi \left\{ \lambda_1 \left[\frac{\sin x - x \cos x}{x^3} \right] - 6\phi \lambda_2 \left[\frac{x^2 \cos x - 2x \sin x - 2\cos x + 2}{x^4} \right] - 0.5\phi \lambda_2 \left[\frac{x^4 \cos x - 4x^3 \sin x - 1}{x^3} \right] \right\}$$

$$\lambda_1 = \frac{(1 + 2\phi)^2}{(1 - \phi)^4}$$

$$\lambda_2 = \frac{-(1 + \frac{\phi}{2})^2}{(1 - \phi)^4}$$

D is the hard sphere diameter = 2 * shell radius (2*R_s); ϕ is the hard sphere volume fraction. For more information on the hard sphere fluid structure refer to the textbook by Hansen and McDonald.¹

2. Structure factor in clustering model

Figure S1. Terms involved in fitting the SAXS data to the cluster model for (a,b) TOMA-NO₃, and (c,d) TOMA-SCN. P(Q) is the form factor of individual reverse micelles, PC(Q) is the scattering from clusters, $S_i(Q)$ is the structure factor within the clusters, and f corresponds to the number of reverse micelles within a cluster.

Table S1. Parameters obtained from fitting the clustering model to the SAXS data for the organic phase obtained after extraction of varying concentrations of lanthanum or lutetium with TOMA-NO₃ or TOMA-SCN from 3 M of corresponding background salt solutions. Rc and Rs are core and shell radii respectively. ρ_c and ρ_s are core and shell electron densities. ϕ_{HS} is the apparent hard sphere volume fraction. f+1 is the average number of aggregates per cluster, R_g is the radius of gyration of the cluster, and d is the Porod exponent corresponding to the scattering from the cluster.

Ln	Background	[Ln], M	R _c (Å)	R _s (Å)	ρ _c (<i>e</i> /ų)	ρ _s (<i>e</i> /ų)	ϕ_{HS}	f	R _g (Å)	d
None	NO ₃ -	0	3.4±0.1	9.4±0.1	0.71±0.05	0.30±0.01	0.068±0.002	0.7	25.8±0.4	1.1±0.1
La	NO ₃ -	0.002	3.2±0.1	9.2±0.1	0.79±0.06	0.31±0.01	0.066±0.002	0.6	24.5±0.4	1.4±0.1
La	NO ₃ -	0.02	3.1±0.1	9.0±0.1	0.99±0.09	0.31±0.01	0.070±0.002	0.7	23.7±0.3	1.3±0.1
La	NO ₃ -	0.1	3.1±0.1	9.3±0.1	1.30±0.14	0.32±0.01	0.075±0.002	1.2	22.6±0.2	1.1±0.1
La	NO ₃ -	0.2	3.1±0.1	9.2±0.1	1.20±0.11	0.32±0.01	0.069±0.002	1.4	22.5±0.2	1.0±0.1
Lu	NO ₃ -	0.002	3.1±0.2	9.3±0.1	0.83±0.09	0.30±0.01	0.069±0.002	0.6	24.5±0.4	1.2±0.1
Lu	NO ₃ -	0.02	3.1±0.1	9.4±0.1	0.88±0.07	0.30±0.01	0.070±0.002	0.7	24.3±0.4	1.1±0.1
Lu	NO ₃ -	0.1	3.1±0.1	9.2±0.1	0.89±0.08	0.31±0.01	0.067±0.002	0.7	24.1±0.4	1.2±0.1
Lu	NO ₃ -	0.2	3.1±0.1	9.5±0.1	0.98±0.08	0.30±0.01	0.065±0.002	0.7	23.9±0.4	1.2±0.1
None	SCN ⁻	0	3.4±0.1	10.0±0.1	0.74±0.01	030±0.01	0.129±0.001	0.0	*	*
La	SCN ⁻	0.002	3.1±0.1	10.1±0.1	0.83±0.01	0.31±0.01	0.092±0.001	0.2	*	*
La	SCN ⁻	0.02	3.1±0.1	9.9±0.1	0.87±0.02	0.31±0.01	0.123±0.001	0.2	*	*
La	SCN ⁻	0.1	3.2±0.1	10.2±0.1	0.91±0.02	0.31±0.01	0.157±0.001	0.0	*	*
La	SCN ⁻	0.2	3.3±0.1	10.1±0.1	0.99±0.02	0.31±0.01	0.159±0.001	0.0	*	*
Lu	SCN ⁻	0.002	3.1±0.1	10.5±0.1	0.94±0.02	0.30±0.01	0.085±0.003	0.4	*	*
Lu	SCN ⁻	0.02	3.1±0.1	9.3±0.1	0.96±0.03	0.30±0.01	0.109±0.005	1.8	20.5±0.4	1.0±0.1
Lu	SCN ⁻	0.1	3.1±0.1	9.3±0.1	1.26±0.09	0.29±0.01	0.064±0.010	4.0	20.8±0.4	1.3±0.1
Lu	SCN ⁻	0.2	3.1±0.1	9.4±0.2	1.23±0.14	0.29±0.01	0.064±0.011	4.2	20.3±0.4	1.1±0.1

Table S2. Parameters obtained from fitting the clustering model to the SAXS data for the organic phase obtained after the extraction of 0.02 M lanthanides with TOMA-NO3 or TOMA-SCN from 3M of corresponding background salt solutions

Ln	Background	R _c (Å)	R _s (Å)	ρ _c (<i>e</i> /ų)	ρ _s (e/ų)	ϕ_{HS}	f	R _g (Å)	d
water	NO ₃ -	3.4±0.1	9.4±0.1	0.71±0.05	0.30±0.01	0.068±0.002	0.7	25.8±0.4	1.1±0.1
La	NO ₃ -	3.1±0.1	9.1±0.1	1.00±0.11	0.31±0.01	0.070±0.002	0.7	23.7±0.2	1.0±0.1
Nd	NO ₃ -	3.1±0.2	9.3±0.1	1.00±0.15	0.31±0.01	0.071±0.002	0.9	23.8±0.2	1.1±0.1
Gd	NO ₃ -	3.1±0.1	9.4±0.1	0.89±0.13	0.31±0.01	0.068±0.002	0.8	23.7±0.2	1.1±0.1
Er	NO ₃ -	3.1±0.1	9.4±0.1	0.94±0.1	0.30±0.01	0.070±0.002	0.8	23.4±0.2	1.1±0.1
Lu	NO ₃ -	3.1±0.1	9.4±0.1	0.88±0.08	0.30±0.01	0.070±0.002	0.7	24.3±0.4	1.2±0.1
water	SCN ⁻	3.4±0.1	10.0±0.1	0.74±0.01	030±0.01	0.129±0.001	0.1	*	*
La	SCN ⁻	3.1±0.1	9.9±0.1	0.86±0.02	0.31±0.01	0.122±0.002	0.1	*	*
Nd	SCN ⁻	3.4±0.1	9.7±0.1	0.74±0.02	0.31±0.01	0.129±002	0.1	*	*
Gd	SCN ⁻	3.1±0.1	9.4±0.1	0.85±0.02	0.31±0.01	0.118±0.01	0.1	*	*
Er	SCN ⁻	3.1±0.1	9.4±0.1	1.00±0.02	0.31±0.01	0.109±0.001	0.6	22.3±0.4	1.1±0.1
Lu	SCN ⁻	3.1±0.1	9.3±0.2	0.96±0.02	0.30±0.01	0.109±0.011	1.8	20.5±0.4	1.0±0.1

3. Aggregation of TOMA-Cl in toluene

Figure S2. SAXS of TOMA-Cl dissolved in toluene at 0.02M (circles), 0.25M (upside down triangles), and (c) 0.5M (squares). Solid dark lines show the fit from cluster model. Clustering is negligible in these solutions and a clear hard sphere structure is seen. This indicates that the repulsion between the aggregates dominates in these solutions.

Table S3. Parameters from t	ne clustering model	fits for SAXS data	of TOMA.Cl in toluene.
-----------------------------	---------------------	--------------------	------------------------

[TOMA- Cl]	R _c (Å)	R₅(Å)	ρ _c (<i>e</i> /ų)	ρ _s (e/ų)	ϕ_{HS}	f	R _g (Å)	d
0.02	5.5±0 .1	10.5	0.48	0.283	0.015	0	*	*
0.25	5.6	9.5	0.41	0.286	0.11	0	*	*
0.5	5.9	10.4	0.44	0.283	0.22	0	*	*

4. Baxter model

$$\eta = \frac{\phi}{\left(1 - e\right)^3}$$

$$\lambda = \frac{(1 + \eta/2)}{(1 - \eta)^2 (\tau + \frac{\eta^2}{1 - \eta} - \frac{\eta}{12})}$$

$$\mu = \lambda \eta (1 - \eta)$$

$$\alpha = \frac{1 + 2\eta - \mu}{(1 - \eta)^2}$$

$$\beta = \frac{\mu - 3\eta}{2(1 - \eta)^2}$$

$$x = QD$$

$$A = 1 + 12\eta \left\{ \alpha \left[\frac{\sin x - x \cos x}{x^3} \right] + \beta \left[\frac{1 - \cos x}{x^2} \right] - \frac{\lambda \sin x}{12 x} \right\}$$

$$B = 12\eta \left\{ \alpha \left[\frac{1}{2x} - \frac{\sin x}{x} + \frac{1 - \cos x}{x^3} \right] + \beta \left[\frac{1}{x} - \frac{\sin x}{x^2} \right] - \frac{\lambda}{12} \left[\frac{1 - \cos x}{x} \right] \right\}$$

$$S(Q) = \frac{1}{A^2 + B^2}$$

These equations are obtained from Menon et al., where they extend the Baxter model to systems with finite well widths.²

Figure S3. Fits obtained using the Baxter model for sticky hard spheres. This model does not capture the low-Q scattering behavior adequately, especially for the NO_3^- case when clustering behavior is significant

- 1. J.-P. Hansen and I. R. McDonald, *Theory of simple liquids : with applications of soft matter*, Elsevier/AP, Amstersdam, Fourth edition. edn., 2013.
- 2. S. V. G. Menon, C. Manohar and K. S. Rao, *J Chem Phys*, 1991, **95**, 9186-9190.