ELECTRONIC SUPPORTING INFORMATION Neutral and charged dark excitons in monolayer WS₂

M. Zinkiewicz,^{1,*} A. O. Slobodeniuk,² T. Kazimierczuk,¹ P. Kapuściński,^{3,4} K. Oreszczuk,¹

M. Grzeszczyk,¹ M. Bartos,^{3,5} K. Nogajewski,¹ K. Watanabe,⁶ T. Taniguchi,⁷

C. Faugeras,³ P. Kossacki,¹ M. Potemski,^{1,3} A. Babiński,¹ and M. R. Molas^{1,†}

¹Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland

²Department of Condensed Matter Physics, Faculty of Mathematics and Physics,

Charles University in Prague, Ke Karlovu 5, Praha 2 CZ-121 16, Czech Republic

³Laboratoire National des Champs Magnétiques Intenses,

CNRS-UGA-UPS-INSA-EMFL, 25, avenue des Martyrs, 38042 Grenoble, France

 4 Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław

University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

⁵Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic

⁶Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

⁷ International Center for Materials Nanoarchitectonics, National

Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

S1. G-FACTORS OF BRIGHT EXCITONIC COMPLEXES

To get more information on the properties of the bright excitons emissions in the studied WS₂ monolayer, we performed the magneto-photoluminescence experiment in magnetic fields up to 10 T oriented perpendicular to ML's plane. Fig. S1 illustrates the measured PL spectra as a function of magnetic fields in the form of colour-coded map. Upon application of an out-of-plane magnetic field, the excitonic emissions split into two circularly polarized components due to the excitonic Zeeman effect¹. Their energies evolutions (E(B)) in external out-of-plane magnetic fields (B_{\perp}) can be described as:

$$E(B) = E_0 \pm \frac{1}{2}g\mu_{\rm B}B_{\perp},\tag{1}$$

where E_0 is the energy of the transition at zero field, g denotes the g-factor of the considered excitonic complex and μ_B is the Bohr magneton. The results of fitting to the experimental results denoted by red and blue points, are presented in Fig. S2 as solid black curves. We found that the g-factors for the bright exciton (X^B) and singlet (T^S) and triplet (T^T) states of negative trions are of about -3.5, -4.0 and -3.9, respectively. The obtained values are in in very close agreement to previous measurements on WS₂ monolayer¹⁻⁵. Summarizing, the g-factors of the bright excitons, *i.e.* complexes for which recombining an electron and a hole posses the same sign of the spin, are very close to the theoretically predicted value of 4¹.

FIG. S1. False-color map of the PL response as a function of B_{\perp} . Note that the positive and negative values of magnetic fields correspond to σ^{\pm} polarizations of detection. The intensity scale is logarithmic. White dashed lines superimposed on the investigated transitions are guides to the eyes.

FIG. S2. Transition energies of the $\sigma^{+/-}$ (blue/red points) components of the X^B, T^S and T^T lines as a function of the outof-plane magnetic field. The solid lines represent fits according to Eq. 1.

- * malgorzata.zinkiewicz@fuw.edu.pl
- [†] maciej.molas@fuw.edu.pl
- ¹ M. Koperski, M. R. Molas, A. Arora, K. Nogajewski, M. Bartos, J. Wyzula, D. Vaclavkova, P. Kossacki, and M. Potemski, 2D Materials **6**, 015001 (2019).
- ² A. V. Stier, K. M. McCreary, B. T. Jonker, J. Kono, and S. A. Crooker, Nature Communications 7, 10643 (2016).
- ³ G. Plechinger, P. Nagler, A. Arora, A. Granados del Águila, M. V. Ballottin, T. Frank, P. Steinleitner, M. Gmitra, J. Fabian, P. C. M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn, Nano Letters **16**, 7899 (2016).
- ⁴ R. Schmidt, A. Arora, G. Plechinger, P. Nagler, A. Granados del Águila, M. V. Ballottin, P. C. M. Christianen, S. Michaelis de Vasconcellos, C. Schüller, T. Korn, and R. Bratschitsch, Phys. Rev. Lett. **117**, 077402 (2016).
- ⁵ P. Kapuściński, D. Vaclavkova, M. Grzeszczyk, A. O. Slobodeniuk, K. Nogajewski, M. Bartos, K. Watanabe, T. Taniguchi, C. Faugeras, A. Babiński, M. Potemski, and M. R. Molas, Phys. Chem. Chem. Phys., (2020).