Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Visible to Near-Infrared Photodetector with Novel Optoelectronic

Performance Based on Graphene/S-doped InSe Heterostructure on hBN Substrate

Qiaoyan Hao, ^a Jidong Liu, ^a Weilong Dong, ^a Huan Yi, ^a Yuxuan Ke, ^a Sisi Tang, ^a Dianyu Qi, ^a Wenjing Zhang*, ^a

Step 1, h-BN was mechanically exfoliated onto SiO_2/Si substrate. The picture above shows the bright field (BF) image of the h-BN flake. To increase the contrast, the dark filed (DF) image was also acquired. Step 2, $InSe_{0.9}S_{0.1}$ was exfoliated on a transparent polydimethylsiloxane (PDMS) stamp. We note that the surface of the $InSe_{0.9}S_{0.1}$ flake was very clean without obvious bump or bubbles. Step 3, the $InSe_{0.9}S_{0.1}$ flake on PDMS was aligned on the target h-BN flake using the home-made micromanipulator. After that, some islands were observed at the $InSe_{0.9}S_{0.1}/h$ -BN interface, which should be associated with the trapped air bubbles that formed during the transfer process. Step 4-5, graphene was exfoliated on a PDMS stamp and located to cover the target $InSe_{0.9}S_{0.1}$ flake to prepare the heterostructure finally. Some islands were also observed at the graphene/ $InSe_{0.9}S_{0.1}$ or graphene/ $InSe_{0.9}S_{0.1}$

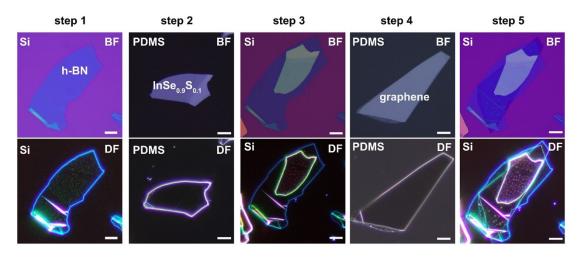


Figure S1. Dry transfer process to fabricate a graphene/InSe_{0.9}S_{0.1} heterostructure on h-BN. Scale bars, 10 µm.

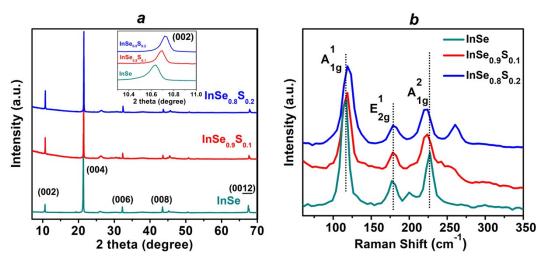


Figure S2. (a) XRD patterns of pure InSe and its S-doped alloys, insert shows the zoom-in view of the (002) diffraction peaks. (b) Raman spectra of pure InSe and its S-doped alloys. It was found that, as the S ratio increased, the A1 1g mode showed a blue-shift trend, while the A2 1g mode showed a red-shift trend. In contrast, the E1 2g mode remained at nearly the same frequency as the S ratio increased.

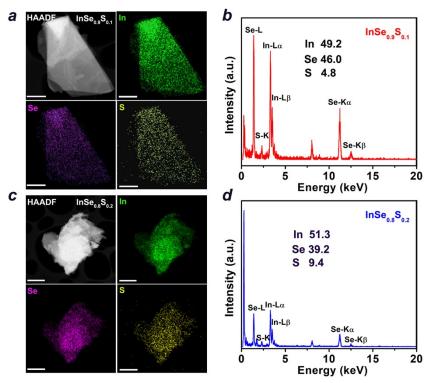


Figure S3. (a) High angle annular dark-field (HAADF) image and corresponding EDS elemental mapping of InSe $_{0.9}$ S $_{0.1}$ flake. Scale bars, 1 μ m. (b) EDS spectrum obtained from InSe $_{0.9}$ S $_{0.1}$ flake. (c) HAADF image and corresponding EDS elemental mapping of InSe $_{0.8}$ S $_{0.2}$ flake. Scale bars, 2 μ m. (d) EDS spectrum obtained from InSe $_{0.8}$ S $_{0.2}$ flake. The actual compositions of InSe $_{0.9}$ S $_{0.1}$ and InSe $_{0.8}$ S $_{0.2}$ were determined to be InSe $_{0.93}$ S $_{0.10}$ and InSe $_{0.76}$ S $_{0.18}$, respectively, close to their nominal compositions within the error of the measurements.

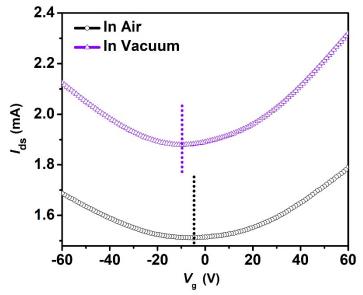


Figure S4. Transfer curves ($I_{ds^-}V_g$) of the device based on graphene/h-BN in the dark under ambient conditions and

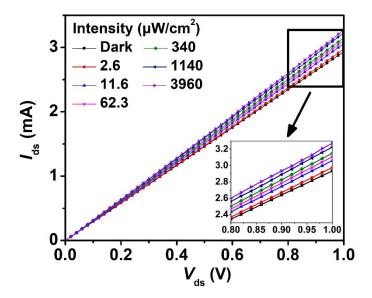


Figure S5. Output characteristics (I_{ds} - V_{ds}) of the device based on graphene/InSe_{0.9}S_{0.1} heterostructure in the dark and under illumination with various excitation intensities (V_g = 0 V, λ = 700 nm).

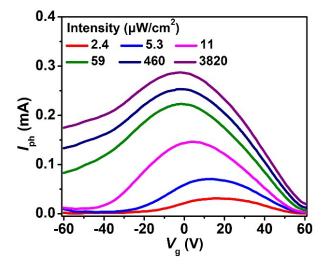


Figure S6. Gate voltage-dependent photocurrent (I_{ph} - V_g) of the graphene/InSe_{0.8}S_{0.2} heterostructure device under different light power densities.

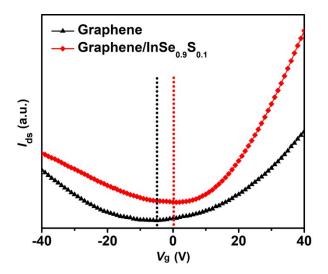


Figure S7. Transfer curves (I_{ds} - V_g) of the devices based on pure graphene and graphene/InSe $_{0.9}$ S $_{0.1}$ heterostructure in the dark under ambient conditions (V_{ds} = 1 V).

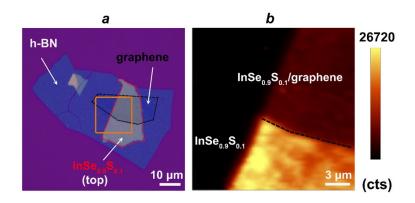


Figure S8. (a) Optical image of an $InSe_{0.9}S_{0.1}/graphene$ heterostructure on h-BN. (b) PL mapping at about 1.29 eV ($InSe_{0.9}S_{0.1}$) of the area marked with the square in (a).

We investigated the optoelectronic performance of the $InSe_{0.9}S_{0.1}$ -based devices. Figure S9a shows the output characteristics ($I_{ds}-V_{ds}$) of the $InSe_{0.9}S_{0.1}$ -based device at different gate voltages. The current increased with increasing positive gate voltage, which is a clear signature of the n-type semiconductor behavior. The on/off current ratio exceeded 10^8 according to the transfer characteristics ($I_{ds}-V_g$) in Figure S9b. Figure S9c presents the photocurrent as a function of illumination intensity at $V_g = 0$ V and 50 V, respectively. A maximum photoresponsivity of 1.6×10^4 A/W was achieved at a low light power density of $7.0 \,\mu\text{W/cm}^2$ and $V_g = 50 \,\text{V}$ for the $InSe_{0.9}S_{0.1}$ photodetector as shown in Figure S9d, which was two orders of magnitude smaller than that $(4.9 \times 10^6 \,\text{A/W})$ of graphene/ $InSe_{0.9}S_{0.1}$ heterostructure device.

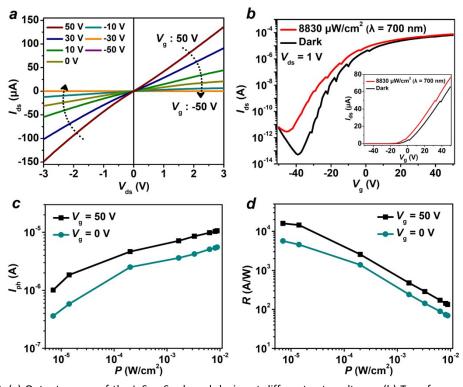


Figure S9. (a) Output curves of the InSe_{0.9}S_{0.1}-based device at different gate voltages. (b) Transfer curves of the InSe_{0.9}S_{0.1}-based device in the dark and under a light power density $P=8830~\mu\text{W/cm}^2$ ($V_{ds}=1~\text{V},~\lambda=700~\text{nm}$) on logarithmic and linear (insert) scales. Measured photocurrent (c) and photoresponsivity (d) as a function of illumination intensity ($V_{ds}=1~\text{V},~\lambda=700~\text{nm}$) for the InSe_{0.9}S_{0.1}-based device.

Table S1. Comparison of device performance for Graphene/2D semiconductor photodetectors.

Materials	Spectral range	R [A/W]	EQE/Gain	Response time (ms)	Ref.
Graphene/S-doped InSe	Visible-NIR	4.9 × 10 ⁶	EQE 8.7 × 10 ⁸ %	41	This work
Graphene/BP	Visible-NIR	1.3 × 10 ³	Gain 1.13 × 10 ⁹	4	1
Graphene/MoTe₂	Visible-NIR	970	Gain 4.69 × 10 ⁸	78	2
Graphene/InSe	Visible	940	EQE 2.18 × 10 ⁵ %	-	3
Graphene/GeSe	Visible	3.5 × 10 ⁵	<i>Gain</i> 1 × 10 ⁷	10	4
Graphene/ReS₂	Visible	7 × 10 ⁵	EQE 1.7 × 10 ⁸ %	30	5
Graphene/MoS ₂	Visible	1.2×10^{7}	Gain 1 × 10 ⁸	2500	6
Graphene/WS₂	Visible	950	-	7850	7

Reference

- 1. Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C. W. Qiu, S. Li and Q. Bao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 36137–36145.
- 2. W. Yu, S. Li, Y. Zhang, W. Ma, T. Sun, J. Yuan, K. Fu and Q. Bao, *Small*, 2017, **13**, 1700268.
- 3. Z. Chen, J. Biscaras and A. Shukla, *Nanoscale*, 2015, **7**, 5981–5986.
- 4. R. Lu, J. Liu, H. Luo, V. Chikan and J. Z. Wu, *Sci. Rep.*, 2016, **6**, 19161.
- 5. B. Kang, Y. Kim, W. J. Yoo and C. Lee, *Small*, 2018, **14**, 1802593.
- 6. W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, J.-H. He, M.-Y. Chou and L.-J. Li, *Sci. Rep.*, 2014, **4**, 3826.
- 7. C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang and Y. Liu, J. Mater. Chem. C, 2017, 5, 1494–1500.