Supplementary Information

Sustainable natural nanofibrous confinement strategy to ultrafine Co_3O_4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-

derivatives in situ hydrogenation

Shenghui Zhou, ^a and Haisong Qi*, ^a, ^b

^a State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.

^b Guangdong Engineering Research Centre for Green Fine Chemicals, Guangzhou 510640, China.

Fig. S1 Schematic illustration for the preparation of BC aerogel.

Fig. S2 SEM images of CNF (a), Co₃O₄/NCNF (b).

Fig. S3 SEM images of Co₃O₄/C.

Fig. S4 TEM element mapping images (d) of $Co_3O_4/NCNF$.

Fig. S5 HRTEM-EDX of Co₃O₄/NCNF.

Figure S6 TG and DTG curves of BC and 20% and 40% Co₃O₄/NCNF.

		Content (wt.%) ^a	
Catalysts	С	Ν	Н
BC	36.3	1.1	5.0
Co ₃ O ₄ /C	43.6	0.4	1.1
Co ₃ O ₄ /CNF	44.9	1.2	2.1
Co ₃ O ₄ /NCNF	48.4	6.3	2.0

 Table S1 The results of elemental analysis for various catalysts

^a Determined by elemental analysis.

Entry	Catalysts	CAL COL			
		Conv. (%)	COL Sel. (%) ^b		
1	Blank	0.2	100		
2	Co ₃ O ₄	3.1	99		
3	С	0.4	99		
4	CNF	1.4	99		
5	NCNF	4.6	99		
6	Co ₃ O ₄ /NCNF	36.8	99		
7	Mn ₃ O ₄ /NCNF	30.25	99		
8	Fe ₃ O ₄ /NCNF	8.3	99		
9	NiO/NCNF	9.9	99		
10 °	Co ₃ O ₄ + NCNF	8.2	99		

Table S2 Catalytic results for different catalysts ^a

^a Reaction conditions: 0.5mmol CAL in 5ml 2-propanol, 50mg catalyst, 160 °C, 3h.

^b The by product is phenylpropanol. ^cCo₃O₄ and NCNF were physically mixed.

Fig. S7 Representative MS spectra of the reaction mixture in FAL hydrogenation.

Fig. S8 Raman spectra (a) and FT-IR spectra (b) of $Co_3O_4/NCNF$ before and after the reaction. N 1s spectrum (c) of recycled $Co_3O_4/NCNF$.

Table S3 The results of elemental analysis for various catalysts

Catalysts			Content (wt.%)	
	Co ^a	N ^b	C ^b	O ^b
Co ₃ O ₄ /NCNF	2.93	4.66	79.85	12.55
Recycled Co ₃ O ₄ /NCNF	2.67	4.2	76.64	16.48

^a Determined by ICP-OES.

^b Determined by elemental analysis.

Entry	Sample	Co ₃ O ₄ mean size	Application	Ref.
1	Co ₃ O ₄ /graphene	10-30 nm	Lithium-ion batteries	[1]
2	N-doped PC-Co ₃ O ₄	5–10 nm	Lithium-ion batteries	[2]
3	R-Co ₃ O ₄ /C	3-10 nm	Sodium-Ion Batteries	[3]
4	NC-Co ₃ O ₄	10–20 nm	Zinc-Air Batteries	[4]
5	Co ₃ O ₄ /rGO	30 nm	Li-ion batteries	[5]
6	Co ₃ O ₄ @NCFs	3–6 nm	lithium/sodium storage	[6]
7	Co ₃ O ₄ /N-PC	15–30 nm	lithium storage and water splitting	[7]
8	NCA/Co ₃ O ₄	5–35 nm	Supercapacitors	[8]
9	Co ₃ O ₄ /CNFs	3-5 nm	Supercapacitor	[9]
10	Co ₃ O ₄ @C-MWCNTs	10–25 nm	OER and ORR	[10]
11	Co ₃ O ₄ -CNFs	20 - 40 nm	Electrodes	[11]
12	HCo ₃ O ₄ /C	6–12 nm	Peroxymonosulfate activation	[12]
13	Co ₃ O ₄ @C@PGC	10–20 nm	microwave absorber	[13]
14	Co ₃ O ₄ -N@C	2–10 nm	Catalysts	[14]
15	CoO _x @NCNTs	12.9 nm	Catalysts	[15]
16	Co ₃ O ₄ /MC	3 nm	Catalysts	[16]
17	Co ₃ O ₄ /carbon	8–25 nm	Catalysts	[17]
18	ZIF-Co ₃ O ₄ /NCF	5–8 nm	Catalysts	[18]
19	Co ₃ O ₄ /NCNFs	1.0-2.5 nm	Catalysts	This work

Table S4 The comparison of Co_3O_4 nanoparticle size with previously reported catalysts.

References

- 1. Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H.-M. Cheng, *ACS nano*, 2010, **4**, 3187-3194.
- 2. L. Wang, Y. Zheng, X. Wang, S. Chen, F. Xu, L. Zuo, J. Wu, L. Sun, Z. Li and H. Hou, *ACS Appl. Mater. Interfaces*, 2014, **6**, 7117-7125.
- 3. M. Xu, Q. Xia, J. Yue, X. Zhu, Q. Guo, J. Zhu and H. Xia, *Adv. Funct. Mater.*, 2019, **29**, 1807377.

- C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu, H. Zhang, Z. Liu, C. Cheng, S. J. Pennycook and J. Wang, *Adv. Mater.*, 2017, 29, 1704117.
- 5. L. Pan, H. Zhao, W. Shen, X. Dong and J. Xu, *J. Mater. Chem. A*, 2013, **1**, 7159-7166.
- K. Zhang, F. Xiong, J. Zhou, L. Mai, and L. Zhang, *Nano Energy*, 2020, 67, 104222.
- 7. Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan and J. Chen, *Nano Energy*, 2015, **12**, 1-8.
- 8. G. Sun, L. Ma, J. Ran, X. Shen and H. Tong, *J. Mater. Chem. A*, 2016, **4**, 9542-9554.
- S. Abouali, M. Akbari Garakani, B. Zhang, Z.-L. Xu, E. Kamali Heidari, J.-q. Huang, J. Huang and J.-K. Kim, ACS Appl. Mater. Interfaces, 2015, 7, 13503-13511.
- 10. X. Li, Y. Fang, X. Lin, M. Tian, X. An, Y. Fu, R. Li, J. Jin and J. Ma, *J. Mater. Chem. A*, 2015, **3**, 17392-17402.
- 11. F. Zhang, C. Yuan, J. Zhu, J. Wang, X. Zhang and X. W. Lou, *Adv. Funct. Mater.*, 2013, **23**, 3909-3915.
- M. A. N. Khan, P. K. Klu, C. Wang, W. Zhang, R. Luo, M. Zhang, J. Qi, X. Sun, L. Wang and J. Li, *Chem. Eng. J.*, 2019, **363**, 234-246.
- F. Wen, H. Hou, J. Xiang, X. Zhang, Z. Su, S. Yuan and Z. Liu, *Carbon*, 2015, 89, 372-377.
- 14. R. V. Jagadeesh, H. Junge, M.-M. Pohl, J. r. Radnik, A. Brückner and M. Beller, *J. Am. Chem. Soc.*, 2013, **135**, 10776-10782.
- 15. Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li and Y. Wang, *ACS Catal.*, 2015, **5**, 4783-4789.
- G. H. Wang, X. Deng, D. Gu, K. Chen, H. Tüysüz, B. Spliethoff, H. J. Bongard, C. Weidenthaler, W. Schmidt and F. Schüth, *Angew. Chem., Int. Ed.*, 2016, 128, 11267-11271.
- 17. B. M. Abu-Zied and K. A. Alamry, J. Alloys Compd., 2019, 798, 820-831.
- L. Song, J. Tang, T. Wang, C. Wu, Y. Ide, J. He and Y. Yamauchi, *Chem. Eur. J.*, 2019, 25, 6807-6813.

Entry	Catalyst	Substrate	H-donor	Reaction conditions	Conv. (%)	Sel. of alcohol (%)	Ref.
1	1.0Pt-5.3FeO _x /SiO ₂ -GD	CAL	1 MPa H ₂	150 °C, 2 h	41	92	[19]
2	Pt-Re/rGO	CAL	2 MPa H_2	120 °C, 4 h	94.1	88.7	[20]
3	Au//In ₂ O ₃	CAL	1 MPa H_2	180 °C, 18 h	91	84	[21]
4	CoPt/Fe ₃ O ₄	CAL	3 MPa H ₂ , 2-propanol	160 °C, 3 h	95	84	[22]
5	Cu-Au/SiO ₂	CAL	2 MPa H_2	100 °C, 3 h	55.0	53.0	[23]
6	Ni-Co/MWCNT	CAL	0.5 MPa H_2	150 °C, 8 h	62.6	62.1	[24]
7	Au/Zn _{0.7} Fe _{0.3} Ox	CAL	2-propanol, 1 MPa H ₂	140 °C, 10 h	75.4	88.5	[25]
8	ZIF-67@SiO ₂ -CPTEOS	CAL	2-propanol, 1 MPa N ₂	180 °C, 18 h	99	93.25	[26]
9	2%Pt-1%Re/TiO ₂ -ZrO ₂	FAL	5 MPa H_2	130 °C, 8 h	100	95.7	[27]
10	Co/SBA-15	FAL	2 MPa H_2	150 °C, 1 h	80	96	[28]
11	Ni-Sn/AlOH	FAL	3 Mpa H_2	180 °C, 75 min	95	91	[29]
12	Cu:Zn:Cr:Zr(3:2:1:3)	FAL	2 MPa H_2	170 °C, 3.5 h	100	96	[30]
13	Fe-L4(L5)/C-800	FAL	2-propanol	160 °C, 15 h	91.6	83	[31]
14	LaFeO ₃ _N	FAL	2-propanol	180 °C, 3 h	-	-	[32]
15	Pd/Fe ₂ O ₃	FAL	2-propanol	180 °C, 7.5 h	100	34	[33]
16	Cu/MgO-Al ₂ O ₃	FAL	2-propanol	210 °C, 1 h,	100	89	[34]
17	DyCl ₃	FAL	2-propanol	180 °C, 3 h, (2Mpa N ₂)	98	97	[35]
18	Al ₇ Zr ₃ @Fe ₃ O ₄	FAL	2-propanol	180 °C, 4 h	99.1	90.5	[36]
19	Fe ₂ O ₃ @HAP	FAL	2-propanol	180 °C, 10 h	96.2	95.3	[37]
20	NiFe ₂ O ₄	FAL	2-propanol	180 °C, 6 h	99	95	[38]
21	Cu ₂ Al	FAL	methanol	200 °C, 2.5 h, (1Mpa N ₂)	100	94	[39]
22	γ-Al ₂ O ₃	FAL	2-propanol	150 °C, 6 h	100	90	[40]
23	e HT_MgFe-3	FAL	2-propanol	170 °C, 6 h	99	90	[41]
24	Co ₃ O ₄ /NCNF	CAL	2-propanol	160 °C, 5 h	100	95	This work
25	Co ₃ O ₄ /NCNF	FAL	2-propanol	160 °C, 2 h	91.0	88	This work
26	Co ₃ O ₄ /NCNF	FAL	2-propanol	160 °C, 3.5 h	99	85	This work

Table S5 The comparison of CTH of CAL and FAL with H_2 or H-donor reaction systems with previously reported catalysts.

References

19. Y. Shi, Z. Yuan, Q. Wei, K. Sun and B. Xu, *Catal. Sci. Technol.*, 2016, **6**, 7033-7037.

20. Z. Wei, X. Zhu, X. Liu, H. Xu, X. Li, Y. Hou and Y. Liu, Chin. J. Chem. Eng., 2019, 27, 369-378.

21. Y. Zhang, S. Zhang, X. Pan, M. Bao, J. Huang and W. Shen, *Catal. Lett.*, 2017, 147, 102-109.

22. T. Yuan, D. Liu, Y. Pan, X. Pu, Y. Xia, J. Wang and W. Xiong, *Catal. Lett.*, 2019, **149**, 851-859.

23. X. Yuan, J. Zheng, Q. Zhang, S. Li, Y. Yang and J. Gong, *AIChE J.*, 2014, **60**, 3300-3311.

24. L. J. Malobela, J. Heveling, W. G. Augustyn and L. M. Cele, *Ind. Eng. Chem. Res.*, 2014, **53**, 13910-13919.

25. W. Wang, Y. Xie, S. Zhang, X. Liu, M. Haruta and J. Huang, *Catalysts*, 2018, 8, 60.

26. H. Cui, S. Liu, Y. Lv, S. Wu, L. Wang, F. Hao, P. Liu, W. Xiong and H. Luo, J. *Catal.*, 2020, **381**, 468-481.

27. B. Chen, F. Li, Z. Huang, G. Yuan, Appl. Catal., A: Gen., 2015, 500, 23-29.

28. M. Audemar, C. Ciotonea, O.V.K. De, S. Royer, A. Ungureanu, B. Dragoi, E. Dumitriu, F. Jérôme, *ChemSusChem*, 2015, **8**, 1885-1891.

29. Rodiansonoa, M. D. Astuti, D. R. Mujiyanti, U. T. Santosoa, S. Shimazu, *Mol. Catal.*, 2018, **445**, 52-60.

30. R.V. Sharma, U. Das, R. Sammynaiken, A.K. Dalai, *Appl. Catal., A: Gen.*, 2013, **454**, 127-136.

31. J. Li, J.L. Liu, H.J. Zhou, Y. Fu, ChemSusChem, 2016, 9, 1339-1347.

32. P. Xiao, X. Xu, J. Zhu, Y. Zhu, J. Catal. 2020, 383, 88-96.

33. D. Scholz, C. Aellig, I. Hermans, ChemSusChem, 2014, 7, 268-275.

34. H. Chen, H. Ruan, X. Lu, J. Fu, T. Langrish, X. Lu, Mol. Catal., 2018, 445, 94-101.

35. P. Panagiotopoulou, N. Martin, D.G. Vlachos, ChemSusChem, 2015, 8, 17-24.

36. J. He, H. Li, A. Riisager, S. Yang, ChemCatChem, 2018, 10, 430-438.

37. F. Wang, Z. Zhang, ACS Sustainable Chem. Eng., 2016, 5, 942-947.

38. J. He, S. Yang, A. Riisager, Catal. Sci. Technol., 2017, 8, 790-797.

39. J. Zhang, J. Chen, ACS Sustainable Chem. Eng., 2017, 5, 5982-5993.

40. R. López-Asensioa, J.A.Cecilia, C.P. Jiménez-Gómeza, C. García-Sanchob, R. Moreno-Tosta, P. Maireles-Torresa, *Appl. Catal., A: Gen.*, 2018, **556**, 1-9.

41. R. Maderuelo-Solera, R. López-Asensio, J.A. Cecilia, C.P. Jiménez-Gómez, C. García-Sancho, R. Moreno-Tost, P. Maireles-Torres, *Appl. Clay Sci.*, 2019, **183**, 105351.