Support Information

Fibroblast activation protein-α-adaptive micelle reprogram stroma fibrosis for promoted anti-cancer drug delivery

Chao Teng ^a, Beiyuan Zhang ^a, Zhongyue Yuan^a, Zheng Kuang^a, Zhuodong Chai^a, Lianjie Ren^{a,b}, Chao Qin ^a, Lei Yang^a, Xiaopeng Han ^{a*} and Lifang Yin^{a*}

^a School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China

^b Center for Drug Evaluation, CFDA, Beijing, 100022, PR China

Corresponding Author

Tel.: +86 2583271018; fax: +86 2583271018. E-mail address: nkhxp15@163.com (Xiaopeng Han)

Tel.: +86 2583271018; fax: +86 2583271018. E-mail address: lifangyin_@163.com (Lifang Yin)

Supplementary Figure Captions

Scheme S1. Synthesis of the FAP- α -sensitive pegylated Hyaluronic acid-Curcumin conjugate (PFHC).

Scheme S2. Synthesis of the non-FAP- α -sensitive pegylated Hyaluronic acid-Curcumin conjugate (PHC)(Ph= p-hydroxy-phenylalanine).

Figure S1. ¹H NMR spectrum of Z-Ala-pro-gly(Z-ARG) in DMSO-d6.

Figure S2. ¹H NMR spectrum of Ala-phe-gly(Z-AHG) in DMSO-d6.

Figure S3. Cleavage of Z-Ala-pro-gly after incubating with FAPα for 4 h. (A) 0h; (B) 4h.

Figure S4. Cleavage of Z-Ala-phe-gly after incubating with FAPα for 4 h. (A) 0h; (B) 4h.

Figure S5. ¹H NMR spectrum of PFHC in D₂O.

Figure S6. ¹H NMR spectrum of PFHC in D_2O after incubating with FAP α for 4 h.

Figure S7. ¹H NMR spectrum of PHC in D_2O after incubating with FAP α for 4 h.

Figure S8. *In vitro* DOX release profiles of DOX/PFHC and DOX/PHC NPs in different conditions. Data are presented as mean \pm SD (n = 3).

Figure S9. The stability of nanapartiles formulations in 10 % plasma (A) and DMEM with 10% FBS(B) (Data are presented as mean \pm SD (n = 3)).

Figure S10. The relative expressing levels of α -SMA in different cell lines with CLSM (bar=20 μ m).

Figure S11. The relative expressing levels of FAP- α in in different cell lines with flow cytometry (a: control, b: NIH3T3 c: active NIH3T3).

Figure S12. The relative expressing levels of CD44 receptors in different cell lines. (A) Immunofluorescence staining analysis of CD44 receptors expression with CLSM (bar=100 μ m). (B) Analysis of CD44 receptors expression with flow cytometry. (C) Analysis of CD44 receptors expression with WB.

Figure S13. Representative CLSM images of 4T1 cell lines following 2 h incubation with different formulations (DOX dosage: $5.0 \mu g/mL$, bar= $50 \mu m$).

Figure S14. Representative CLSM images of active NIH3T3 cell lines following 2 h incubation with different formulations (DOX dosage: $5.0 \mu g/mL$, bar= $50 \mu m$).

Figure S15. The cytotoxicity of Dox+Cur against different cell lines for 24h. (A)NIH3T3, (B) 4T1, (C) active NIH3T3 cells (mean \pm SD, n = 3)(The concentration of free Cur was equal to that in DOX-loading nanoparticles with same DOX dosage).

Figure S16. (A-B)Ex vivo Dox fluorescence images of the major organs and tumor harvested from the 4T1-NIH3T3 bearing mice following different times intravenous injection of NPs (DOX:5mg/kg). (C)Quantitative analysis of relative organ and tumor accumulation at 8 h (*P \leq 0.05, indicates ± SD, n = 3).

Figure S17. Plasma concentration-time curves of DOX in rats after intravenous administration with different DOX formulations at a dose of 5 mg/kg DOX (n = 3, mean \pm SD).

Figure S18. Expression of FAP α by western blot in 4T1 tumor tissues (30µg of rhFAP α used as control).

Figure S19. H&E staining of major organs after the last treatment (bar= $50 \mu m$).

Figure S20. Morphological evaluations of tumor sites. (A) In situ cell death detection of tumor tissue (TUNEL);(B) *In vivo* evaluation of tumor proliferation level by Ki-67 immunohistochemistry (* $P \le 0.05$, ** $P \le 0.01$, indicates ± SD, n = 3).

Figure S21. Semi-quantitative analysis of Masson staining and α -SMA by immunofluorescent staining (*P ≤ 0.05 , indicates ± SD, n = 3).

Figure S22. Micro-distribution of NPs in tumor mass after last treatment. (bar=20 µm)

Figure S23. Semi-quantitative analysis of TGF-beta and MCP-1 by immunofluorescent staining ($*P \le 0.05$, indicates \pm SD, n = 3).

Table S1. Characterizations of the micelles. (indicates \pm SD, n = 3)

Table S2. Pharmacokinetic parameters of Dox and DOX-loading NPs in mice after a single intravenous administration at the dose of 5 mg/kg (n = 3).

PFHC

Scheme S1. Synthesis of the FAP- α -sensitive pegylated Hyaluronic acid-Curcumin conjugate (PFHC).

PHC

Scheme S2. Synthesis of the non-FAP- α -sensitive pegylated Hyaluronic acid-Curcumin conjugate (PHC)(Ph= p-hydroxy-phenylalanine).

Figure S1. ¹H NMR spectrum of Z-Ala-pro-gly(Z-ARG) in DMSO-d6.

Figure S2. ¹H NMR spectrum of Ala-phe-gly(Z-AHG) in DMSO-d6.

Figure S3. Cleavage of Z-Ala-pro-gly after incubating with FAPa for 4 h. (A) 0h; (B)

Figure S4. Cleavage of Z-Ala-phe-gly after incubating with FAPα for 4 h. (A) 0h; (B) 4h.

Figure S5. ¹H NMR spectrum of PFHC in D_2O .

4h.

Figure S6. ¹H NMR spectrum of PFHC in D_2O after incubating with FAP α for 4 h.

Figure S7. ¹H NMR spectrum of PHC in D_2O after incubating with FAP α for 4 h.

Figure S8. *In vitro* DOX release profiles of DOX/PFHC and DOX/PHC NPs in different conditions. Data are presented as mean \pm SD (n = 3).

Figure S9. The stability of nanapartiles formulations in 10 % plasma (A) and DMEM with 10% FBS(B) (Data are presented as mean \pm SD (n = 3)).

Figure S10. The relative expressing levels of α -SMA in different cell lines with CLSM (bar=20 μ m).

Figure S11. The relative expressing levels of FAP- α in in different cell lines with flow cytometry (a: active NIH3T3, b: NIH3T3 c: control).

Figure S12. The relative expressing levels of CD44 receptors in different cell lines. (A) Immunofluorescence staining analysis of CD44 receptors expression with CLSM (bar=100 μ m). (B) Analysis of CD44 receptors expression with flow cytometry. (C) Analysis of CD44 receptors expression with WB.

Figure S13. Representative CLSM images of 4T1 cell lines following 2 h incubation with different formulations (DOX dosage: $5.0 \mu g/mL$, bar= $50 \mu m$).

Figure S14. Representative CLSM images of active NIH3T3 cell lines following 2 h incubation with different formulations (DOX dosage: $5.0 \mu g/mL$, bar= $50 \mu m$).

Figure S15. The cytotoxicity of Dox+Cur against different cell lines for 24h. (A)NIH3T3, (B) 4T1, (C) active NIH3T3 cells (mean \pm SD, n = 3)(The concentration of free Cur was equal to that in DOX-loading nanoparticles with same DOX dosage).

Figure S16. (A-B)Ex vivo Dox fluorescence images of the major organs and tumor harvested from the 4T1-NIH3T3 bearing mice following different times intravenous injection of NPs (DOX:5mg/kg). (C)Quantitative analysis of relative organ and tumor accumulation at 8 h (*P \leq 0.05, indicates ± SD, n = 3).

Figure S17. Plasma concentration-time curves of DOX in rats after intravenous administration with different DOX formulations at a dose of 5 mg/kg DOX (n = 3, mean \pm SD).

Figure S18. Expression of FAP α by western blot in 4T1 tumor tissues (30µg of rhFAP α used as control).

Figure S19. H&E staining of major organs after the last treatment (bar= 50 µm).

Figure S20. Morphological evaluations of tumor sites. (A) In situ cell death detection of tumor tissue (TUNEL);(B) *In vivo* evaluation of tumor proliferation level by Ki-67 immunohistochemistry ($*P \le 0.05$, $**P \le 0.01$, indicates \pm SD, n = 3).

Figure S21. Semi-quantitative analysis of Masson staining and α -SMA by immunofluorescent staining (*P \leq 0.05, indicates ± SD, n = 3).

Figure S22. Micro-distribution of NPs in tumor mass after last treatment. (bar=20 µm)

Figure S23. Semi-quantitative analysis of TGF-beta and MCP-1 by immunofluorescent staining ($*P \le 0.05$, indicates \pm SD, n = 3).

Name	Size(nm)	PDI	Zeta potential DL		EE
			(mv)	(%)	(%)
DOX/PHC	178.1±2.5	0.202±0.08	0	9.8±0.15	98±0.23
DOX/PFHC	167.3±1.3	0.12±0.02	-3.2±0.3	9.9±0.13	95±0.21

Table S1. Characterizations of the micelles. (indicates \pm SD, n = 3)

after a single indivenous administration at the dose of 5 mg/kg $(n - 5)$.							
Parameter	Units	DOX	DOX/PHC	DOX/PFHC			
AUC _(0-t)	μg/L*h	1118.44±103.51	1184.44±367.6 5	1358.33±132.92			
t _{1/2}	h	4.47±1.13	13.6±4.01	13.92 ± 1.9			

Table S2. Pharmacokinetic parameters of Dox and DOX-loading NPs in mice after a single intravenous administration at the dose of 5 mg/kg (n = 3).