Supporting Information

Oxygen Vacancy Modulated Homojunction Structural CuBi₂O₄ for Efficient Solar Water Reduction

Shenqi Wei,^a Chenglong Wang,^a Xuefeng Long,^a Tong Wang,^a Peng Wang,^a Mingrui Zhang,^b Shuwen Li,^a Jiantai Ma,^a Jun Jin*^a and Lan Wu*^b

^aState Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, Gansu, 730000, P. R. China

E-mail: jinjun@lzu.edu.cn

^bCollege of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, P.R. China

E-mail:wulan@xbmu.edu.cn

The equations

The conversion between potentials versus Ag/AgCl and versus RHE is determined using the equation below.

 $E(\text{versus RHE}) = E(\text{versus Ag/AgCl}) + E_{\text{Ag/AgCl}}(\text{refer}) + 0.0591\text{V} \times \text{pH}$ $E_{\text{Ag/AgCl}}(\text{refer}) = 0.197 \text{ V versus NHE at 25 }^{o}\text{C}$ (1)

Incident photon to current efficiency (IPCE) was obtained using an Oriel Cornerstone 260 1/4 m monochromator with a 500W Oriel Xe lamp as the simulated light source (LSH-X500B). An applied potential of 1.23 V vs. RHE was supplied by a miniature integrated electrochemical workstation (Zolix Instruments Co., Ltd). IPCE values were calculated using the equation below

$$IPCE(\%) = \frac{J \times 1240}{\lambda \times P_{light}} \times 100\%$$
(2)

J refers to the photocurrent density (mA cm⁻²) obtained from the electrochemical workstation. λ and P_{light} are the incident light wavelength (nm) and the power density obtained at a specific wavelength (mW cm⁻²), respectively.

Applied bias photon-to-current efficiency (ABPE) can be calculated using the following equation:

$$ABPE(\%) = \frac{J \times (1.23 - V_b)}{P_{light}} \times 100\%$$
(3)

J refers to the photocurrent density (mA cm⁻²) obtained from the electrochemical workstation. V_b is the applied bias vs. RHE (V), and P_{light} is the total light intensity of AM 1.5 G (100 mW cm⁻²).

The light absorption efficiency or light harvesting efficiencies (LHE, defined as the ratio of absorbed light to the incident light) of each photoanodes are calculated from their UV–Vis absorption spectra:

$$LHE = 1 - 10^{-A(\lambda)} \tag{4}$$

where $A(\lambda)$ is the absorbance at a specific wavelength. In order to calculate J_{abs} (the photocurrent density achievable assuming 100% absorbed photon-to-current conversion efficiency for photons) the solar spectral irradiance at AM 1.5G (W·m⁻²·nm⁻¹, ASTM G173-03) is first converted to solar photocurrents vs. wavelength (A·m⁻²·nm⁻¹) assuming 100% IPCE for photons. Then the solar photocurrents are multiplied by the LHE at each wavelength and adding these products up.

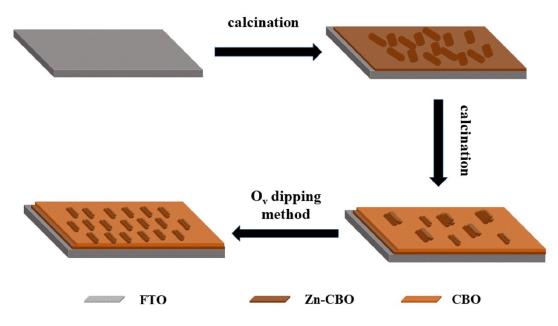
According to the M-S curves, charge carrier density (N_d) can be calculated using the following equation:

$$N_{d} = \frac{2}{e\varepsilon_{0}\varepsilon} \times \left[\frac{d\left[\frac{1}{C^{2}}\right]}{dV_{S}}\right]^{-1}$$
(5)

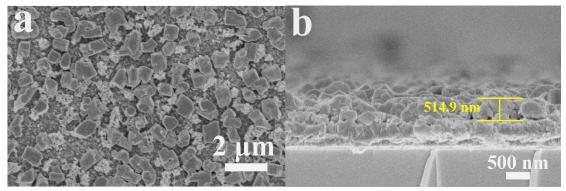
The electronic charge (e) is 1.6×10^{-19} C, vacuum permittivity (ϵ_0) is 8.854×10^{-14} F m⁻¹, and relative permittivity (ϵ) is 80 for CBO. C (F cm⁻²) is the space charge capacitance in the semiconductor (obtained from M-S curves), and V_s (V) is the applied potential for M-S curves.

the efficiency of charge transport in the bulk (η_{bulk} , relating to bulk charge separation) and surface charge transfer efficiency ($\eta_{surface}$, the yield of holes that are involved in water oxidation reaction after reaching the

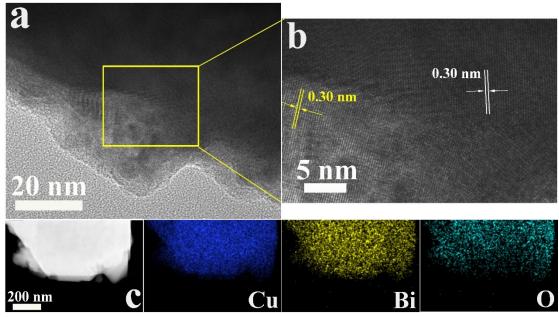
electrode/electrolyte interfaces) of the prepared photoanodes, can be calculated using the following equations:

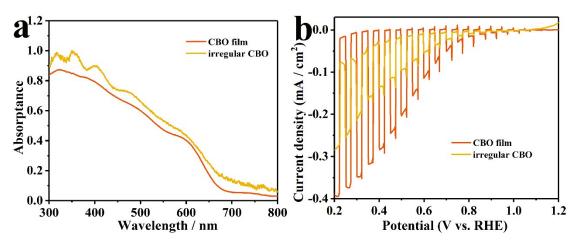

$$\eta_{bulk} = \frac{J^{Na_2 SO_3}}{J_{abs}}$$
(6)
$$\eta_{surface} = \frac{J^{H_2 O}}{J^{Na_2 SO_3}}$$
(7)

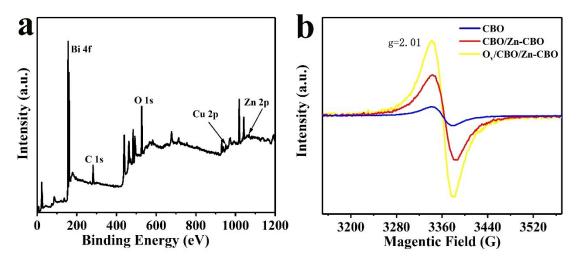
J _{abs} is the unity converted photocurrent density from the light absorption, while J^{H2O} and J^{Na2SO3} are the photocurrent densities obtained in 1 M KOH electrolyte and 1 M Na₂SO₃ (pH 9.5), respectively.

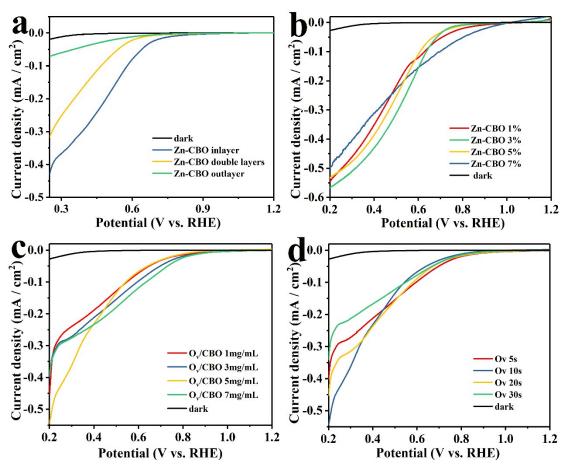

The formula for calculating transient decay time D is as follows:

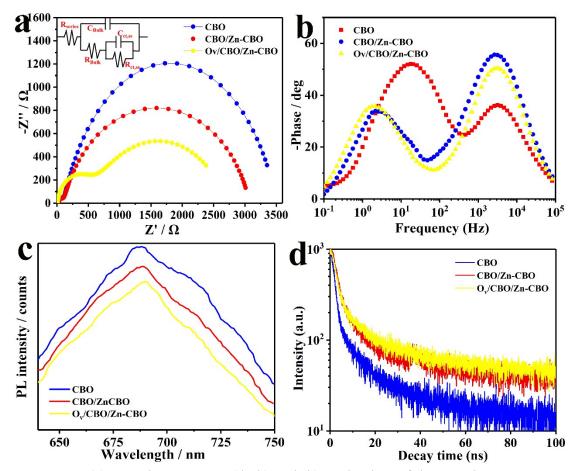
$$D = (I_t - I_s) / (I_m - Is)$$
(8)

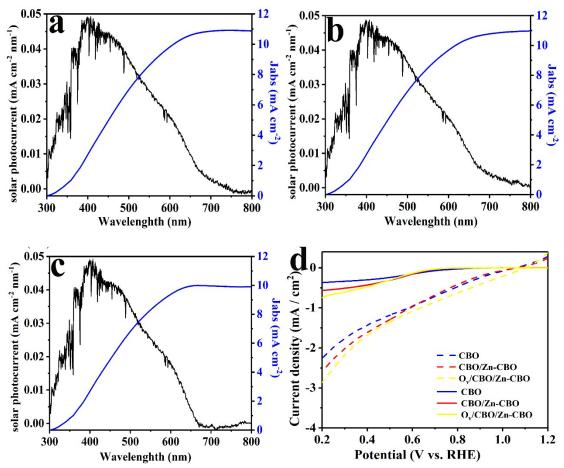

in which I_t is the current at time t, I_s is the stabilized current, and I_m is the current spike. The transient decay time can be defined as the time at which $\ln D$ =-1.


Scheme S1. Schematic diagram of the preparation procedure of the $O_v/CBO/Zn-CBO$ photocathode.


Figure. S1 Top-view SEM images of (a) CBO/Zn-CBO. Cross-sectional view SEM images of (b) CBO


Figure. S2 TEM images of (a) CBO/Zn-CBO, HRTEM images of (b) CBO/Zn-CBO. (c) STEM-EDX element mapping for the CBO.


Figure. S3 (a) UV-visible diffuse reflection spectra and (b) Photocurrent density curves of CBO film and irregular CBO


Figure S4. (a) XPS full spectrum (b) EPR measurements for CBO, CBO/Zn-CBO and $O_v/CBO/Zn$ -CBO photocathodes.

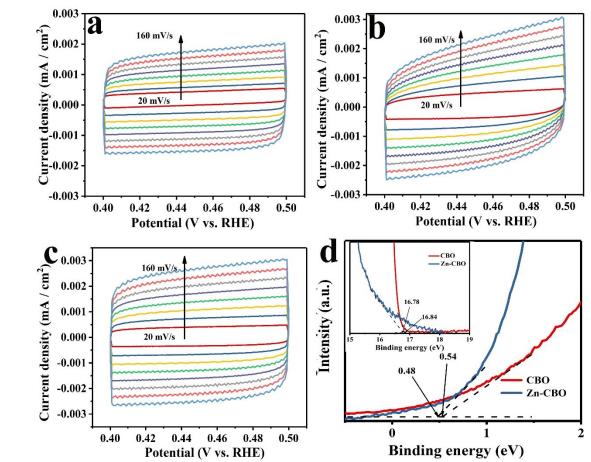

Figure S5. Photocurrent density curves of (a) Zn-doped CBO in different layers (inlayer out layer and double layers), (b) Zn-doped CBO at different concentrations (1 %, 3 %, 5 % and 7 %), (c) CBO treated with NaBH₄ of different concentrations (1 mg/mL, 3 mg/mL, 5 mg/mL and 7 mg/mL), (d) CBO dipping with NaBH₄ at different times (5 s, 10 s, 20 s and 30 s).

Figure S6. (a) Impedance curves (dark) and (b) Bode plots of the samples at 0.3 V vs. RHE under illumination (c) Steady-state photoluminescence emission spectra of all samples (d) photoluminescence decay curves of the samples.

Figure S7. Jabs values of (a) CBO, (b) CBO/Zn-CBO, and (c) $O_v/CBO/Zn$ -CBO photocathodes (assuming 100 % absorbed photon-to-current conversion efficiency for photons) (d) LSVs of CBO, CBO/Zn-CBO and $O_v/CBO/Zn$ -CBO photocathodes with or without H₂O₂.

Figure S8. Voltammograms of the (a) CBO, (b) CBO/Zn-CBO, and (c) $O_v/CBO/Zn$ -CBO photocathodes at various scan rates (20-160 mV/s) (d) UPS spectra for CBO and Zn-CBO photocathodes.

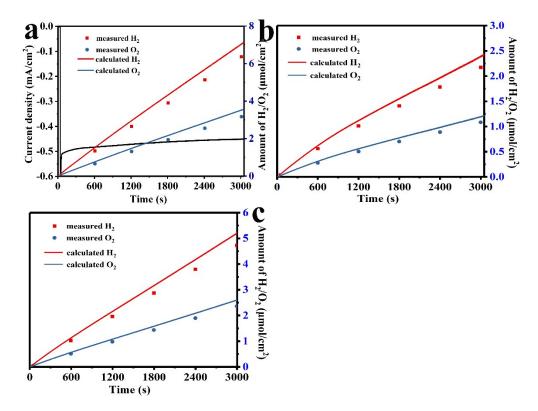


Figure S9 I–t curve and calculated (solid lines) and measured (dots) H_2 and O_2 evolution at 0.3 V vs. RHE over the (a) $O_v/CBO/Zn$ -CBO (b) CBO and (c) CBO/Zn-CBO photocathode.

Year	Photocathode	Morphology	Electrolyte (pH)	Photocurrent density	- Ref.
2020	O _v /CuBi ₂ O ₄ /Zn- CuBi ₂ O ₄	irregular bumps	0.3 M K ₂ SO ₄ /0.2 M Phosphate buffer solution (pH 6.65)	0.6 mA/cm ² at 0.3 $V_{\rm RHE}$	This work
2014	CuO/CuBi ₂ O ₄ /Pt	film	0.3 M K ₂ SO ₄ , 0.1 M phosphate (pH 6.8)	0.71 mA/cm ² at 0.4 V_{RHE}	Phys Chem Chem Phys, 2014, 16, 22462-22465
2014	CuBi ₂ O ₄ /CuO	nanoflower	0.1 M Na ₂ SO ₄	0.38 mA/cm ² at 0.3 V_{RHE}	J. Mater. Chem. A, 2014, 2, 3661-3668
2015	CuBi ₂ O ₄	film	0.1 M Na ₂ SO ₄ (pH 6)	0.01 mA/cm ² at 0.3 V_{RHE}	J Mater Chem A, 2016, 4, 2936-2942
2016	CuBi ₂ O ₄ / Ag-CuBi ₂ O ₄	film	0.1 M NaOH (pH 12.8)	0.5 mA/cm ² at 0.5 V_{RHE}	Chem Mater, 2016, 28, 4331-4340
2016	Au/CuBi_2O_4 /pt	film	0.1 M Na ₂ SO ₄ (pH 6.8)	0.78 mA/cm ² at 0.3 $V_{\rm RHE}$	J Mater Chem A, 2016, 4, 8995-9001
2016	$CuBi_2O_4/pt$	film	$0.3 \text{ M } \text{K}_2 \text{SO}_4 \text{ and } 0.2$ M phosphate buffer (pH 6.65)	0.58 mA/cm ² at 0.3 V _{RHE}	Chem Mater, 2016, 28, 4231-4242
2016	$CuBi_2O_4$	thin film	0.5 M Na ₂ SO ₄ (pH 6)	0.105 mA/cm ² at 0.3 $V_{\rm RHE}$	Mater Lett, 2017, 188, 192- 196.
2017	CuO/CuBi_2O_4 and $\alpha \text{-}$ Bi_2O_3/CuBi_2O_4	nanocomposite	0.1 M Na ₂ SO ₄	0.23 mA/cm ² (CuO/CuBi ₂ O ₄) 0.05 mA/cm ²	J Phys Chem C, 2017, 121, 8252-8261
2017	$\mathrm{CuBi_2O_4}$	thin film	0.3 M K ₂ SO ₄ and 0.2 M phosphate buffer (pH 6.65)	Less than 0.3 $\rm mA/cm^2$ at 0.6 $\rm V_{RHE}$	J Mater Chem A, 2017, 5, 12838-12847
2017	CuBi ₂ O ₄ /PTh	porous film	$0.3 \text{ M K}_2 \text{SO}_4 \text{ and } 0.2$ M NaPi (pH 6.66)	0.41 mA/cm ² at 0.3 V_{RHE}	Int. J. Hydrogen. Energ. 2018 43 2064-2072
2018	CuBi ₂ O ₄ /Au/N, Cu-C	film	0.3 M K ₂ SO ₄ /0.2 M Phosphate buffer solution (pH 6.68)	0.31 mA/cm ² at 0.5 V_{RHE}	ACS. Sustain. Chem. Eng. 2018 6 7257-7264.
2018	$CuBi_2O_4$	textured	$0.1 \text{ M Na}_2\text{SO}_4 \text{ aqueous}$ solution (pH 6.8)	0.39 mA/cm ² at 0.3 $V_{\rm RHE}$	Chem Communs, 2018, 54, 3331-3334
2019	CuBi ₂ O ₄ /ZnSe/P25	film	0.3 M K ₂ SO ₄ /0.2 M Phosphate buffer solution (pH 6.65)	0.43 mA/cm ² at 0.3 V_{RHE}	ChemElectroChem, 2019, 6, 3367-3374.
2019	Cu:NiO/CuBi ₂ O ₄	film	0.3 M K ₂ SO ₄ /0.2 M Phosphate buffer solution (pH 6.65)	0.5 mA/cm ² at 0.6 $V_{\rm RHE}$	ChemElectroChem, 2019, 6, 3367-3374.
2020	CuBi ₂ O ₄	Planar film	0.132 M KOH and 0.05 M KCl	0.68 mA/cm ² at 0.25 V_{RHE}	J Mater Chem A, 2019, 7, 9183-9194
2020	CuO/CuBi ₂ O ₄	film	0.5 M Na2SO4	0.9 mA/cm ² at 0.1 V_{RHE}	Int J Hydrogen Energy, 2020, 45, 15121-15128.

Table S1. Comparison of our photocathode to other CuBi₂O₄-based photocathode.

- 1. H. S. Park, C. Y. Lee and E. Reisner, *Phys. Chem. Chem. Phys*, 2014, 16, 22462-22465.
- 2. R. Patil, S. Kelkar, R. Naphade and S. Ogale, *J. Mater. Chem. A*, 2014, **2**, 3661-3668.
- 3. G. Sharma, Z. Zhao, P. Sarker, B. A. Nail, J. Wang, M. N. Huda and F. E. Osterloh, *J. Mater. Chem. A*, 2016, *4*, 2936-2942.
- 4. D. Kang, J. C. Hill, Y. Park and K.-S. Choi, *Chem. Mater*, 2016, **28**, 4331-4340.
- D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang and Y. Lei, *J. Mater. Chem.* A, 2016, 4, 8995-9001.
- 6. S. P. Berglund, F. F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich and R. van de Krol, *Chem. Mater*, 2016, **28**, 4231-4242.
- 7. Y.-H. Choi, K. D. Yang, D.-H. Kim, K. T. Nam and S.-H. Hong, *Mater. Lett*, 2017, **188**, 192-196.
- M. K. Hossain, G. F. Samu, K. Gandha, S. Santhanagopalan, J. P. Liu, C. Janáky and K. Rajeshwar, J. Phys. Chem. C, 2017, 121, 8252-8261.
- 9. Q. Nie, L. Yang, C. Cao, Y. Zeng, G. Wang, C. Wang and S. Lin, *Chem. Eng. J*, 2017, **325**, 151-159.
- 10. N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma and J. Jin, *Int. J. Hydrogen. Energy*, 2018, **43**, 2064-2072.
- 11. N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma and J. Jin, ACS. Sustain. Chem. Eng, 2018, 6, 7257-7264.
- 12. J. Li, M. Griep, Y. Choi and D. Chu, Chem. Commun, 2018, 54, 3331-3334.
- 13. S. Wei, N. Xu, F. Li, X. Long, Y. Hu, L. Gao, C. Wang, S. Li, J. Ma and J. Jin, *ChemElectroChem*, 2019, **6**, 3367-3374.
- 14. A. Song, P. Plate, A. Chemseddine, F. Wang, F. F. Abdi, M. Wollgarten, R. van de Krol and S. P. Berglund, *J. Mater. Chem. A*, 2019, **7**, 9183-9194.
- 15. M. Li, X. Tian, X. Zou, X. Han, C. Du and B. Shan, *Int. J. Hydrogen. Energy*, 2020, **45**, 15121-15128.
- 16. S. Pulipaka, N. Boni, G. Ummethala and P. Meduri, J. Catal, 2020, 387, 17-27.