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DFT settings

All calculations were carried out using spin-unrestricted DFT in VASP code with 
generalized gradient approximation (GGA) in Perdew-Burke-Ernzerhof (PBE) form.[1, 
2] The valence electronic states were expanded in the basis of plane waves with the 
core-valence interaction represented using the projector augmented wave (PAW) 
approach and a cutoff energy of 400 eV.[3] The energy barriers shown in Fig. S6 was 
searched using the climbing image nudget elastic band (CI-NEB) method.[4] To dispel 
the interaction among the Au cluster and its periodic images, the large (4×4) and (5×5) 
surface unit cells with a vacuum layer of 30 Å was used for optimizing the structure of 
the supported Au clusters. The k-point sampling is set as the Γ point to the large 
supercell. The TiO2(101) 2-D periodic slab contained 3 TiO2(101) layers. The bottom 
TiO2(101) layer was fixed to their lattice position as mimetic bulk structure and the rest 
TiO2 layers were allowed to relax during geometry optimizations. The force 
convergence criterion for the geometrical optimization was set at 0.05 eV/Å and the 
electronic self-consistent is set to be 10-5.

Kinetic Monte Carlo algorism 

The standard “rejection-free” KMC algorism is adopted in this work, in which the 
time occurrence of a jump ( ) is decided by the below formula:Δ𝑡

                  (1),
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where R is a random number in (0, 1),  is the sum of all the possible jumping rates, 𝑟𝑡𝑜𝑡

 is the total number of metal atoms,  is the number of empty NN sites of i.  𝑁𝑎 𝑁𝑁 ∗
𝑖 𝑟𝑖𝑗

is the jumping rate as calculated below:

                       (2),
𝑟𝑖𝑗 =

𝑘𝑏𝑇

ℎ
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where  is the Boltzmann constant, h is the Planck constant,  is the temperature, and 𝑘𝑏 𝑇

 is the activation energy of the jump. In this work,  is estimated by the formula 𝐸𝑎 𝐸𝑎

below that satisfies the principle of microscopic reversibility by fitting with the 
Brönsted-Evans-Polanyi relations and has been successfully used in real-time 
simulations of nanocrystal transformation:[5, 6]
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                     (3). 
𝐸𝑎 = 𝐸𝑓 ‒ 𝐸𝑏 ‒

𝐸𝑓

𝐸𝑏 + 𝐸𝑓
𝐸𝑓

 and  is defined as the formation and broken energy during one atomic jump, 𝐸𝑓 𝐸𝑏

which are negative. 
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Table S1. The DFT results of formation energy per atom of Au clusters supported on 

TiO2(101) surface, which is calculated by 𝐸𝑓 =‒ (𝐸𝑐𝑜ℎ + 𝐸𝑎𝑑ℎ)/𝑁𝑎

clusters  (eV)𝐸𝑓

Au1 0.37

Au2 1.57

Au3 1.77
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Figure S1. Optimized structures and calculated cohesive energies of Au clusters. The 
cluster structures of Au8, Au10, and Au13 were referred from Ref. 7.
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Figure S2. Optimized structures of supported Au clusters on the TiO2(101) surface. 
The corresponding result of Au79 used in this work was taken from our previous 
work (Ref. 8).
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Figure S3. The morphologic change of different initial shapes over a short period of 
time. 
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Figure S4. Simulations of the two NPs on different initial positions. 
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Figure S5. Simulated size evolutions of supported Au NPs with different initial atom 
numbers as functions of time.
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Figure S6. Frequency of occurrence of Au atoms with CN=0 and CN=1 during the 
OR simulation.  
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Figure S7. Two energy barriers of detaching a monomer and a dimer from the same 
NP calculated at the DFT level. The initial structure was obtained from the KMC 
simulation.
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Figure S8. Simulated sintering of Au NPs on the TiO2(101) surface with multiple 
initial sizes. The surface area is 40×40 nm2.
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Figure S9. Snapshots (top) and CN statistical analysis during the OR simulation using 
smaller U.
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