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Preparation of initial PANI composites (Table S1):  PANI and PANI:poly(2-acrylamido-2-

methyl-1-propanesulfonic acid) (PAAMPSA) complexes were prepared following prior reports 

from our group.1-3 Initially, dispersions of PANI and PANI:PAAMPSA (1 mg/ml) in 

water/DMSO were directly vacuum filtered using a Nylon filter paper (pore size: 0.2 μm and 

diameter: 47 mm). BANF-containing composites were fabricated by mixing and stirring for 2 

h desired amounts of PANI or PANI:PAAMPSA dispersions with BANF dispersions (1 mg/ml) 

in water/DMSO followed by vacuum filtration. Layered PANI/BANF composites were 

fabricated using sequential vacuum filtration. More specifically, desired amounts of 

BANFs/DMSO (1 mg/ml) were filtered to form thin films of BANFs. Subsequently, 

PANI/water (1 mg/ml) mixtures were filtered through the BANF premade membrane. Finally, 

composites containing PANI:PAAMPSA, 10 wt% BANFs, and 10 wt% of a third component 

(b-PEI, MWCNT-COOH, or GO) were fabricated by directly mixing and stirring for 2 h 

dispersions of the components (1 mg/ml) in water followed by vacuum filtration. GO 

dispersions (1 mg/ml) in water were prepared following previous reports using the modified 

Hummers’ method.4, 5 All composites were washed with a 1M HCl solution and dried under 

vacuum at 60 oC for 3 days. Composites containing MWCNT-COOH and GO were thermally 

reduced at 200 oC for 2 h under vacuum. The total mass of the composites was kept constant 

at ~20 mg. 
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Table S1 Failed fabrication attempts for PANI-containing free-standing electrodes.

Attempt # Sample Approach Issue

1 PANI: 100 wt% Vacuum filtration of PANI dispersion in water Cracked film

2 PANI: 90 wt%

BANF: 10 wt%

Vacuum filtration of PANI/BANF dispersion in DMSO PANI is soluble in DMSO, thus not 

captured by filter paper

3 PANI: 90 wt%

 BANF 10 wt%

Vacuum filtration of PANI/BANF dispersion in water Cracked film

4 PANI 90 wt% 

BANF 10 wt%

Layer by layer vacuum filtration: 1st layer BANF/DMSO 

2nd layer PANI/water

Poor electrochemical performance

(specific capacitance of <10 F/g)

5 PANI:PAAMPSA: 100 wt% Vacuum filtration of PANI:PAAMPSA dispersion in water Cracked film

6 PANI:PAAMPSA: 90 wt%

BANF: 10 wt%

Vacuum filtration of PANI:PAAMPSA/BANF dispersion in 

DMSO

PANI:PAAMPSA is soluble in DMSO, 

thus not captured by filter paper

7 PANI:PAAMPSA: 90 wt% 

BANF: 10 wt%

Vacuum filtration of PANI:PAAMPSA/BANF dispersion in 

water

Cracked film

8 PANI:PAAMPSA: 80 wt%

BANF: 10 wt%

b-PEI: 10 wt %

Vacuum filtration of PANI:PAAMPSA/BANF/b-PEI 

dispersion in water

Cracked film

9 PANI:PAAMPSA: 80 wt% 

BANF: 10 wt%

MWCNT-COOH: 10 wt%

Vacuum filtration of PANI:PAAMPSA/BANF/MWCNT-

COOH dispersion in water

Poor electrochemical performance

(specific capacitance of <10 F/g)

10 PANI:PAAMPSA: 80 wt% 

BANF: 10 wt% 

GO: 10 wt%

Vacuum filtration of PANI:PAAMPSA/BANF/GO 

dispersion in water

Poor electrochemical performance 

(specific capacitance of <80 F/g)
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Table S2 Composition of composite films using the gravimetric method.

PANI (wt%) BANF (wt%) SWCNT (wt%) PANI/CNT BANF/CNT

BANF - 100 - - -

PANI/BANF 15 85 - - -

PANI/BANF/7 wt% CNT 13 80 7 1.86 11.4

PANI/BANF/12 wt% CNT 15 73 12 1.25 6.1

PANI/BANF/22 wt% CNT 14 64 22 0.63 2.9

PANI/BANF/29 wt% CNT 15 56 29 0.51 1.9

BANF/CNT - 86 14 - 6.1

PANI/CNT 12 - 88 0.44 -

Fig. S1 (a) Raman and (b) FT-IR spectra for BANF, BANF/CNT, and PANI/BANF/CNT. 

Legend in panel (a) applies also in panel (b). The shaded regions refer to peaks of interest 

(Table S3).
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Table S3 Raman spectroscopy for BANF, BANF/CNT, and PANI/BANF/CNT.

Raman shift [cm-1] BANF BANF/CNT PANI/BANF/CNT

1176 C=C stretching C=C stretching C=C stretching/C-H bending

1267 C=C stretching C=C stretching C=C stretching

1321 C-H in plane bending C-H in plane bending C-H in plane bending

1331 - - C-N stretching

1496 - - C=N stretching

1508 C=C stretching C=C stretching C=C stretching

1564 N-H bending/C-N stretching N-H bending/C-N stretching N-H bending/C-N stretching

1588 - G-band G-band

1608 C=C stretching C=C stretching C=C stretching

1650 C=O stretching C=O stretching C=O stretching

Table S4 FT-IR/ATR spectroscopy for BANF, BANF/CNT, and PANI/BANF/CNT.

Wavenumber [cm-1] BANF BANF/CNT PANI/BANF/CNT

1173 C-H in-plane deformation C-H in-plane deformation C-H in-plane deformation/ N=Q=N 

stretching

1318 C-N stretching of secondary 

aromatic amines

C-N stretching of secondary 

aromatic amines

C-N stretching of secondary 

aromatic amines

1490 C-H bending C-H bending C-H bending /N-B-N stretching

1515 C=C stretching C=C stretching C=C stretching

1545 N-H deformation and C-N 

stretching coupled modes

N-H deformation and C-N 

stretching coupled modes

N-H deformation and C-N stretching 

coupled modes

1645 C=O stretching C=O stretching C=O stretching

3300 N-H stretching N-H stretching N-H stretching

* B represents benzenoid and Q quinoid moieties in PANI
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Fig. S2 Cross-sectional SEM images for (a) PANI/BANF and (b) PANI/CNT.

Table S5 Mechanical and electrical properties.

Sample Young’s 
modulus [GPa]

Ultimate 
strength [MPa]

Ultimate strain 
[%]

Toughness 
[kJ/m3]

Conductivity 
[S/cm]

BANF 3 ± 0.1 138 ± 5.3 8.5 ± 0.2 7100 ± 175 -

PANI/BANF 5.4 ± 0.6 58 ± 1.4 1.9 ± 0.4 770 ± 270 0.0014 ± 0.0001

BANF/CNT 2.5 ± 0.2 64 ± 6 5.4 ± 0.9 1900 ± 350 0.13 ± 0.02

PANI/CNT 1.8 ± 0.3 18.2 ± 3.1 1.2 ± 0.1 136 ± 25 28 ± 1.4

PANI/BANF/7 
wt% CNT

4.6 ± 0.4 48 ± 4.5 1.8 ± 0.2 508 ± 20 0.21 ± 0.03

PANI/BANF/12 
wt% CNT

4 ± 0.5 40 ± 4 1.7 ± 0.2 430 ± 40 2.5 ± 0.4

PANI/BANF/22 
wt% CNT

1.5 ± 0.3 14.3 ± 1.5 1.4 ± 0.1 96 ± 27 2.8 ± 0.2

PANI/BANF/29 
wt% CNT

1.4 ± 0.2 10.8 ± 1.7 1.2 ± 0.2 81 ± 20 3.0 ± 0.2
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Table S6 Ashby plot data for PANI-containing composites.

Sample Young’s 
modulus [GPa]

Ultimate 
strength [MPa]

Conductivity 
[S/cm]

Film fabrication method

2-layer PANI/ANF6 3.4 150 19.3 Layer by layer filtration

PANI/PC7 0.8 28 0.01 Pressurized powder

PANI/BC8 5.6 95.7 0.05 In-situ polymerization on 
premade BC films

PANI/CS9 1.7 32.3 7.69x10-7 Drop-casting

PANI/ANF VF10 1.3 50 0.001 Vacuum filtration

PANI/CNT11 1.9 9.9 1.9 Vacuum filtration

PANI/BANF/12 wt% CNT 
(this work)

4 ± 0.5 40 ± 4 2.3 ± 0.6 Vacuum filtration

PANI/BANF (this work) 5.4 ± 0.6 58 ± 1.4 0.0014 ± 0.0001 Vacuum filtration

BANF/CNT (this work) 2.5 ± 0.2 64 ± 6 0.13 ± 0.02 Vacuum filtration

PANI/CNT (this work) 1.8 ± 0.3 18.2 ± 3.1 28 ± 1.4 Vacuum filtration

Table S7 Specific capacitance (based on active mass: PANI and CNT) at varying scan rates 
from cyclic voltammetry.

Scan 
rate [V/s]

PANI/BANF 
[F/g]

BANF/CNT [F/g] PANI/CNT [F/g] PANI/BANF/12 
wt% CNT [F/g]

0.001 7.5 ± 0.3 9.8 ± 0.2 299.1 ± 1.2 245.4 ± 2.6

0.005 6.0 ± 0.2 6.6 ± 0.3 278.7 ± 0.5 207.2 ± 1.4

0.01 4.1 ± 0.3 5.8 ± 0.1 250.2 ± 0.9 180.8 ± 4.1

0.02 2.3 ± 0.1 5.7 ± 0.5 220.1 ± 2.3 159.3 ± 0.9

0.05 1.3 ± 0.2 5.9 ± 0.4 172.3 ± 3.5 131.4 ± 1.3

0.1 0.8 ± 0.1 6.0 ± 0.5 130.2 ± 0.8 108.2 ± 3.7



8

Table S8 Cycling stability for 1,000 cycles at 0.5 A/g from galvanostatic charge/discharge test 
(based on active mass: PANI and CNT).

cycle # PANI/BANF [F/g] BANF/CNT [F/g] PANI/CNT [F/g] PANI/BANF/12 wt% CNT 
[F/g]

1 7 ± 0.9 19.7 ± 1.3 259.3 ± 4.2 206.9 ± 2.1

50 5.5 ± 1.2 16.0 ± 2.1 252.3 ± 4.6 181.2 ± 3.7

100 3.2 ± 0.5 14.3 ± 0.9 251.4 ± 5.3 166.3 ± 6.2

200 2.3 ± 0.6 12.1 ± 0.7 246.3 ± 3.2 154.4 ± 5.8

300 - 9.7 ± 3.2 244.7 ± 5.8 148.5 ± 4.6

400 - 7.4 ± 0.9 240.2 ± 6.2 145.5 ± 3.2

500 - 3.1 ± 0.6 236.1 ± 4.1 139.7 ± 3.3

600 - - 233.5 ± 4.0 133.6 ± 3.9

700 - - 232.9 ± 3.8 130.7 ± 3.1

800 - - 231.3 ± 2.1 127.7 ± 3.7

1000 - - 229.7 ± 2.7 121.8 ± 5.1

Fig. S3 Ashby plot of Young’s modulus vs. specific capacitance vs. tensile strength for PANI-

containing free-standing supercapacitor electrodes. Specific capacitance values were 

calculated per total electrode mass.
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Table S9 Ashby plot data for PANI-containing supercapacitor electrodes.

Sample Young’s 
modulus 

[GPa]

Ultimate 
strength 

[MPa]

Specific capacitance 
[F/g], based on 

active mass

Specific capacitance 
[F/g], based on total 

mass

Film fabrication 
method

rGO/PANI12 2.8 43 424.4 424.4 Vacuum filtration

PANI/CNF13 1.7 0.5 - 234.0 In-situ polymerization 
on free standing CNF 

films

PANI/NC14 6.6 12.4 421.5 - Vacuum filtration

PANI/rGO/NC15 0.64 5.8 - 79.7 Vacuum filtration

PLA/CNT/PANI16 1.2 18.7 510.3 70 In-situ polymerization 
on free standing 
PLA/CNT films

PANI grown on 
ANF17

4 233.3 168 138 In-situ polymerization 
on free standing ANF 

films

PANI/BANF/12 
wt% CNT (this 
work)

4 ± 0.5 40 ± 4 245.4 ± 2.6 90.6 ± 1.0 Vacuum filtration

PANI/BANF (this 
work)

5.4 ± 0.6 58 ± 1.4 7.5 ± 0.3 1.3 ± 0.1 Vacuum filtration

BANF/CNT (this 
work)

2.5 ± 0.2 64 ± 6 9.8 ± 0.2 1.6 ± 0.1 Vacuum filtration

PANI/CNT (this 
work)

1.8 ± 0.3 18.2 ± 3.1 299.1 ± 1.2 299.1 ± 1.2 Vacuum filtration
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Fig. S4 Cyclic voltammograms for PANI/BANF/12 wt% CNT cathodes in a lithium metal 

half-cell at varying scan rates (1-100 mV/s) in a 1.5 to 4 V vs. Li/Li+ voltage range.
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Fig. S5 Galvanostatic charge-discharge curves at 50 mA/g for the 1st, 2nd, and 10th cycle for a 

PANI/BANF/12 wt% CNT cathode in a lithium metal half-cell.

Fig. S6 Nyquist plot of PANI/BANF/12 wt% CNT cathode obtained by performing EIS before 

cycling and after 25 cycles. The inset shows the equivalent circuit used to model the data. EIS 

was conducted at 3.3 V vs. Li/Li+ with a 5 mV amplitude and a frequency range of 1 MHz - 

100 mHz.
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Fig. S7 SEM images for PANI/BANF/12 wt% CNT cathodes after 200 charge-discharge cycles 

at 50 mA/g of the (a) surface and (b) cross-section.

Fig. S8 (a) Specific power vs. specific energy and (b) power density vs. energy density for 

PANI/BANF/12 wt% CNT cathodes in a lithium metal half-cell.
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Table S10 Comparison of gravimetric capacity against other PANI containing battery 

electrodes.

Sample Specific capacity 
[mAh/g], based 
on PANI mass

Specific capacity 
[mAh/g], based on 

total mass

Specific current/C-rate 
and electrolyte

Mechanical 
properties

Electrode 
fabrication 

method

PANI/MXene18 188 144.7 100 mA/g and 1 M LiClO4 

in PC
Not reported Layer by layer

PANI/rGO3 524 461 100 mA/g and 0.5 M 
LiClO4 in PC

Not reported Layer by layer

PANI/SWCNT 
aerogels19

181 140 60 mA/g and 1 M LiPF6 in 
EC:DEC

Not reported Supercritical drying 
of hydrogel

PANI/MWCNTs2

0
Not reported 122.8 20 mA/g and 1 M LiPF6 in 

EC:DMC
Not reported Doctor blading

PANI/Polyoxom
etalate 
nanofibers21

Not reported 183.4 0.1 C and 1 M LiPF6 in 
EC:DEC

Not reported Doctor blading

PANI/BANF/12 
wt% CNT (this 
work)

128 ± 5 25.6 ± 1 50 mA/g (0.33 C) and 1 M 
LiPF6 in EC:DEC:DMC

See Table 
S5

Vacuum filtration

Fig. S9 Plot of log(i) vs. log(v) for (a) cathodic and (b) anodic scans in cyclic voltammetry for 

PANI/BANF/12 wt% CNT cathodes. (c) Plot of b-value vs. potential (V vs. Li/Li+) as 

calculated from log(i) = b·log(v) + log(a).  
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Fig. S10 Graphs of i/v0.5 vs. v0.5 for (a) cathodic and (b) anodic scans for PANI/BANF/12 wt% 

CNT cathodes.
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