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The supplemental material includes information regarding equivalent dose sampling, the
benefits of line hop scanning over line separated scanning, how the reconstructed images in
the main manuscript were analysed and compared, and a condensed version of the
MATLAB code used in this investigation.

Equivalent Dose Sampling

In Figure 2a of the main manuscript two datasets are presented; one utilising a single pass
method and the other using a lap scanning method. The purpose of the lap scanning method
is, as stated, to show that the reduction in maximum beam influence is due to the step
separation and not the reduced dose. While this is presented as part of the dwell time
investigation in the manuscript, the following figures (S1 and S2) show the same method
applied to both the thickness and diffusion coefficient investigations. These figures show
how the lap scanning method, which is functionally analogous to compressive sensing
STEM video, performs with decreasing sampling percentage. As the sampling percentage
decreases the number of laps required to keep the dose equivalent increases. After a point,
increasing the step separation provides negligible decreases to the line-to-line overlap, but
increases the scan-to-scan overlap, causing a rise in the maximum beam influence as
sampling percentage decreases. This implies that lower is not always better, and that for
equivalent dose sampling there exists an optimum step separation.
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Figure S1. Equivalent dose sampling shows a deviation from the curve presented in figure
2b. This is due to the presence of scan-to-scan overlap, and the effect is more prevalent in
higher step separations as more laps are performed.
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Figure S2. The equivalent dose scan variant of figure 2c shows a large variance in the
maximum beam influence as the sampling percentage decreases. Similar to figure S1 this is
due to scan-to-scan overlap.

Line Hop Scanning

A question that often comes up is why line hop scanning is used over a sampling scheme in
which straight scan lines are separated, as shown in figure S3. Referring to the main text,
the distinction is made between the kinds of beam overlap — point-to-point, line-to-line, and
scan-to-scan. While both line hop and line separated scanning reduces the amount of line-
to-line overlap, line hop scanning provides a reduction to the other two types due to the
random variation perpendicular to the scan direction. Scan-to-scan overlap is reduced as
there is a reduced chance that the same pixel will be sampled multiple times. Point-to-point
overlap is reduced due to the average distance between successive on-path pixels
increasing, which is explainable by Pythagoras’ theorem and is shown in figure S4. This
effect is also accumulative as each point-to-point overlap reduction applies to future scan
positions along the same path as well. In figure S3 it is apparent that there are some
locations during the line hop scan where successive lines become close to one another.
While this will result in an increase in the overlap from the next line, it also means a
reduction in overlap from the previous line, and so over a number of lines this effect
averages out.
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Figure S3. A 12.5% line hop scan (left) and the equivalent line separated scan (right).
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Figure S4. Jumping diagonally, as in line hop sampling, increases the pixel-to-pixel jump

distance from 1 unit to 1.4142 units (square root of 2).



Image Comparison

The quality of figure 4c was validated by comparison against figure 4a using two metrics;
peak signal-to-noise ratio (PSNR) and maximum cross correlation (CC). Both the PSNR and
CC were calculated using MATLABSs native functions, Peak Signal-to-Noise Ratio
(https://uk.mathworks.com/help/images/ref/psnr.html), and the Normalized 2-D cross-
correlation (https://uk.mathworks.com/help/images/ref/normxcorr2.html).

MATLAB Code

A condensed version of the MATLAB code has been made available in this document that is
able to replicate the data shown in the main manuscript, as well as the MATLAB files
required to run the code. Copy and paste the following texts into MATLAB and save as
beam_overlap.m and fickdiff.m respectively.

% %

% Beam_overlap.m - A study of how changing STEM sampling schemes affects
% beam influence generation in homogenous monoatomic films.

%

% Other m-files required: fickdiff.m

%

% Instructions:

% Input desired microscope and sample parameters. For line hop sampling
% investigation, choose beam_type = 300. For all beam_types, sampling
% percentage is determined by 100/beam_step_y. Without modification,

%  this program performs a series of line hop exposures with increasing

%  step separation (from 1nm to 20nm, 100% to 5% sampling). Changing dt
% and dx allows the user to scale the system appropriately for the

%  diffusion coefficient they are interested in, quicker diffusion

%  requires larger space steps/smaller time steps to be stable

%  mathematically. Raster and random scanning options are available to

%  compare line hop sampling against.

%

% By plotting max_BI against step_sep this program can be used to

%  determine the optimum sampling percentage required to image a sample
%  at the defined microscope parameters to reduce the maximum beam

% influence generated during the scan by minimising the amount of

% beam overlap that takes place.

%

% Main parameters are:

% max_step_separation - largest step separation to cycle to (in pixels)

% dt, dx - time and space steps

% beam_type - type of sampling scheme implemented
% D - diffusion coefficient of material

%  dwell_time - dwell time in us

%  thickness - sample thickness in nm

% ZN - Z number

%

% Outputs:

% step_sep - step separations used in calculations
% max_Bl - maximum beam influence of a scan at
% incremental step separations

%
% Author: Daniel Nicholls
% email: d.nicholls@liverpool.ac.uk
% October 2019; Last revision: 31-Oct-2019
% %
plotting = 0; Y%live plotting (slow)
%0 = off, 1 = on



https://uk.mathworks.com/help/images/ref/psnr.html
https://uk.mathworks.com/help/images/ref/normxcorr2.html

max_step_separation = 30;

max_BIl = zeros(max_step_separation,1);

(BI)

step_sep = zeros(max_step_separation,1);

dt = 1e-6;
accuracy data.
dx = 1e-9;

dx2 = dx"2;

%--Microscope Properties

%maximum step separation (in pixels) (d)

%1*107-6 for microsecond timestep. Lower values for higher

%space step

%space step squared
%change dt and dx appropriately to
Y%balance accuracy and sim runtime.

%

beam_type = 200;

dwell_time = 1;
dose_rate = 1*(dt/1e-6);
EO =200,

%--Material Properties

%100 = raster
%200 = random
%300 = lane constrained random |h
%dwell time in microseconds (usec)
%1 'dose' per us
%accelerating voltage in keV
%

D=1*107-13);
thickness = 3;
ZN = 29;

lattice_p = 3.6149 * 107(-10);

lattice_n =4;
Nv = lattice_n/(lattice_p”3);
%--Space Initilisation

%diffusion coefficient
%sample thickness (nm)
Y%sample atomic number
%lattice constant (m)
Y%number of atoms per unit cell
Y%number of atoms per m"3
%

X = 256;
Y =X;

Z = floor(thickness * 1e-9/dx);

sinkco = 0.5;
aoi = floor(X * (1-sinkco));
sinksize = X * sinkco;

dwell_time = dwell_time * (1e-6/dt);

DPPL = D * (dt/dx2);
DCH = 6*DPPL;

Y%size of array in X
%size of array in Y
%sample thickness in pixels
%use these to control region of
Y%interest size. Increases
%computational power exponentially.

Y%relative size of unradiated area...
%...between sample and heat sink
%size of sink used for beam positioning

%dwell time in dt units
Y%stability criteria

%--Beam Broadening Equations %

t z=Z*dx;

%foil thickness (m)

B =8* 10M(-12) * (ZN / E0) * (NV)N(0.5) * t_z7(1.5);

C=8*107M-12) * (ZN / E0) * (Nv)(0.5);
o/

%from TEM - Williams &

%Carter for reference only

%used in later calculation
%

%
%
%

% Nothing beyond this point requires changing.

%
%
%

o/
/0

%

for var1 = 1:1:max_step_separation

%cycle from d = 1 to d = max_step_separation

%preallocation for saving the max. beam influence

%preallocation for saving the step separation values



beam_step_y = varf1; %distance between successive line scans iny
if DCH > 1 %break if unstable

disp("CONDITIONALLY UNSTABLE")

disp("CONDITIONALLY UNSTABLE")

disp("CONDITIONALLY UNSTABLE")

disp("CONDITIONALLY UNSTABLE")

disp("CONDITIONALLY UNSTABLE")

break
end
%--Scan Start Position %
ix = ceil(1+(sinksize/2)); %x start position
iy = ceil(1+(sinksize/2)); %y start position
iy_home = ceil(1+(sinksize/2)); %beam home position in y
%--Preallocation %
main = zeros(X,Y,Z); %preallocated array
dcrt = main;
lapm = 0; Y%lap marker
lapch = 0; %lap checker
%--Time Initilisation %

ttot = (aoi) * aoi * dwell_time * (1/(beam_step_y));
%estimated runtime (just for
Y%self referencing)

tt=0; %dwell time tracker

time = 0; Y%time initialise

max_a = zeros(ceil(ttot),1);
max_i = zeros(ceil(ttot),1);

%--Simulation Start %
while lapm == Y%perform 1 scan
disp([time/ttot var1]) Y%progress tracker
if lapch ==
disp([lapm ttot])
lapch = 0;
end %lap checker
tt=tt+1; %dwell time checker
time = time + 1; Y%sim time (in dt)
%--Beam at position %
ix = ceil(ix); %center probe
iy = ceil(iy); %center probe
fordZ=1:Z
dB = C * ((dZ-1) * dx)*(1.5); %Beam broadening in nm
dB =dB * 1/dx; %Beam broadening in pixels

R = floor(floor(dB)/2);
%beam assumed to be approximately circular, symettrical and uniform
if floor(R) ==
main(ix,iy,dZ) = main(ix,iy,dZ) + dose_rate;
else
forrx =1-R:R
forry = 1-R:R
if sqrt(rx"2 + ry"2) <= R
main(ix+rx,iy+ry,dZ) = main(ix+rx,iy+ry,dZ) + dose_rate/(pi * length(1-R:R));
end
end
end
end
end Y%sample irradiation
%--Raster Scan %
if beam_type == 100




if tt == dwell_time
iXx=ix+1;
if ix > X-(sinksize/2)
iy =iy + (beam_step_y);
ix = ceil(1+(sinksize/2));
if iy > Y-(sinksize/2)
iy = ceil(1+(sinksize/2));
lapm = lapm + 1;
lapch = 1;
end
end
tt=0;
end
end %generate next [ix iy] raster

%--Random Sampling %

%--Lane Constrained Linehop Sampling

%

if beam_type == 200
if tt == dwell_time
ix = randi([ceil(1+(sinksize/2)) ceil(X-(sinksize/2))],1);
iy = randi([ceil(1+(sinksize/2)) ceil(Y-(sinksize/2))],1);
tt=0;
end

if mod(time,floor(aoi * aoi * dwell_time * (1/beam_step_y))) =

lapm = lapm + 1;
lapch = 1;
end
end %generate next [ix iy] random

if beam_type == 300
if ix > X-(sinksize/2)
iy_home =iy_home + beam_step_y;
if iy_home > Y-(sinksize/2)
iy_home = 1+ceil((sinksize/2));
ix = 1+ceil((sinksize/2));
lapm = lapm + 1;

else
ix = 1+ceil(sinksize/2);
iy = iy_home;
tt=0;

end

else

if tt == dwell_time

ix=ix+1;

variance =iy - iy_home;
if variance == 0 && var1 > 1
iy =iy +1;
elseif variance == 0 && var1 ==
iy = 1iy;
elseif variance == var1-1
iy =iy-1;
else
switch randi([1 2],1)
case 1
iy=iy-1,;
case 2
iy =iy +1;
end
end
end
tt=0;
end

%



end %generate next [ix iy] linehop

%--Transfer Action (Fick's Law) %
alpha = fickdiff(main,dx2,dt,D,X,Y,Z); %Fick's Law diffusion calc.
main = main + alpha;

%--Heat Sink %

main(1,:,:) = 0; %sink at X and Y edges (not top surface)
main(X,:,:) = 0;
main(;,1,:) = 0;
main(:,Y,:) = 0;
%--Max at all space %
forx = 1:X
fory=1:Y
forz=1:Z

if main(x,y,z) > dcrt(x,y,z)
dert(x,y,z) = main(x,y,z);

end
end
end
end Y%records maximum Bl at all positions
%--Data Acqusition %
max_main = max(max(max(main))); Y%calculating maximum Bl

if max(max(max(main))) > max_main
max_main = max(max(max(main)));
end

max_a(time) = max_main; Y%record max Bl
max_i(time) = time*dt; %record time series
%--Plotting %
if plotting == %live plots on or off
%--Flat Heatmap %
figure(1)
subplot(2,2,1)
imagesc(main(:,:,1)) %live plot top surface
axis square
title("Top surface")
subplot(2,2,2)
imagesc(main(:,:;,end))  %live plot bottom surface
axis square
title("Bottom surface")
subplot(2,2,3)
imagesc(dcrt(:,:,1))
axis square
title("Top surface - max")
subplot(2,2,4)
imagesc(dcrt(:,:,end))
axis square
title("Bottom surface - max")
end
end

max_Bl(var1) = max(max_a);
step_sep(var1) = var1*(dx/1e-9);

figure(1)

clims = [0 max(max(max(main)))l;
subplot(1,2,1)
imagesc(main(:,:,1),clims);

axis square

title("Top surface")



subplot(1,2,2)
imagesc(main(:,:,end),clims);
axis square

title("Bottom surface")

figure(2)

subplot(1,2,1)

plot(max(dcrt(:,:,end)))

title("Maximum Beam Influence Profile over all sim time")
hold on

axis square

subplot(1,2,2)

plot(max(main(:,:,end)))

title("Maximum Beam Influence Profile al final sim time")
hold on

axis square

figure(3)

imagesc(dcrt(:,:,end))

axis square

set(gca,"YTickLabel',[]);

set(gca,'XTickLabel',[]);
end

filename_ml = strcat('dwell_time_',num2str(dwell_time*dt/1e-6)," us_max_BI','.mat');
filename_Iv = strcat('dwell_time_',num2str(dwell_time*dt/1e-6),' us_step_sep','.mat’);
save(filename_ml,'max_BI');
save(filename_lv,'step_sep');

%--Script End %
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function [A1] = fickdiff(main,dx2,dt,D,X,Y,Z)

% %

% fickdiff.m - Diffusion mechanism utilised in Beam_overlap.m
%

% Author: Daniel Nicholls

% email: d.nicholls@liverpool.ac.uk

% October 2019; Last revision: 31-Oct-2019

% %

alpha = zeros(X,Y,Z);

forh=1
fork =2:Y-1
for | = 2:Z-1
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k-1,1) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,) + D * (dt/dx2) * (main(h,k,I-1) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h+1,k,I) - main(h,k,));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k+1,l) - main(h,k,));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,I+1) - main(h,k,));

end
end
end
forh =X
fork =2:Y-1
for | =2:Z-1
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h-1,k,l) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k-1,1) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,I-1) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k+1,I) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,I+1) - main(h,k,I));
end
end
end
for h = 2:X-1
fork=1
for | = 2:Z-1
alpha(h,k,l) = alpha(h,k,) + D * (dt/dx2) * (main(h-1,k,l) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,) + D * (dt/dx2) * (main(h,k,I-1) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h+1,k,I) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k+1,I) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,I+1) - main(h,k,l));
end
end
end
for h = 2:X-1
fork=Y
for | = 2:Z2-1
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h-1,k,l) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k-1,1) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,l-1) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h+1,k,I) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,I+1) - main(h,k,I));
end
end
end
for h = 2:X-1
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fork =2:Y-1
forl=1

alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h-1,k,l) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k-1,1) - main(h,k,));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h+1,k,I) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k+1,1) - main(h,k,]));
alpha(h,k,l) = alpha(h,k,I) + D * (dt/dx2) * (main(h,k,I+1) - main(h,k,l));

end
end
end
for h = 2:X-1
for k = 2:Y-1
forl=Z
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h-1,k,l) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k-1,1) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,I-1) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h+1,k,I) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k+1,I) - main(h,k,l));
end
end
end
for h = 2:X-1
for k = 2:Y-1
for | = 2:Z-1
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h-1,k,l) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k-1,1) - main(h,k,));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,I-1) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h+1,k,I) - main(h,k,I));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k+1,1) - main(h,k,l));
alpha(h,k,l) = alpha(h,k,l) + D * (dt/dx2) * (main(h,k,I+1) - main(h,k,l));
end
end
end
A1 = alpha;
end
%--Script End %
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