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A: Calculate the single-electrode capacitance under the three-electrode system 
The volume and specific capacitance of a single electrode in a three-electrode cell configuration 
can be calculated according to their GCD curves by the following equations:

                               (1)
𝐶(𝑉𝑜𝑙𝑢𝑚𝑒)=

𝐼 × ∆𝑡
𝑉 × ∆𝑈

                              (2)
𝐶(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐) =

𝐼 × ∆𝑡
𝑚 × ∆𝑈

where  is the discharge current,  is the discharge time,  is the potential window of the 𝐼 ∆𝑡 ∆𝑈

discharge process,  is the effective volume of the electrode, and m is the mass of active material.𝑉

B: Calculate the asymmetric supercapacitor capacitance under the two-electrode system
The volume and specific capacitance of asymmetric supercapacitor under the two-electrode 
system can be calculated according to their GCD curves by the following equations:

                              (3)
𝐶(𝑉𝑜𝑙𝑢𝑚𝑒)=

𝐼 × ∆𝑡
𝑉 × ∆𝑈

                             (4)
𝐶(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐) =

𝐼 × ∆𝑡
𝑚 × ∆𝑈

In this case,  is the total volume of the two electrodes, and  is the total mass of the device. 𝑉 𝑚

The energy density ( ) and power density ( ) were calculated according to the following 𝐸 𝑃

equations respectively:

                             (6)
𝐸=

1
2
× 𝐶 × ∆𝑈2

                                  (7)
𝑃=

𝐸
∆𝑡

where  is the volume or specific capacitance of the asymmetric supercapacitor,  and  are the 𝐶 ∆𝑡 ∆𝑈

discharge time and potential window of the discharge process.
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Fig. S1: The synthesis mechanism of electrodeposited PANI.



Fig. S2: The cyclability of the PANI@AWC slice.



Fig. S3: Electrochemical characteristics of CNT/AWC slices: (a) CV curves at various 

scan rates, (b) GCD curves at different current densities, (c) the volume and mass 

specific capacitance at different current densities.



Fig. S4: SEM image of the cross-sectional-view of an PANI@CNT/AWC slices



Fig. S5: The cyclability of the PANI@CNT/AWC slice.



Fig. S6: Nyquist plots of the PANI@CNT/AWC and PANI@AWC slices; the inset 

graph is the magnified image.



Fig. S7: Nyquist plots of the ASC device; the inset graph is the magnified imag



Table S1: The comparison of specific energy density and cycling stability between 

PANI@CNT/AWC//CNT /AWC ASC device and other supercapacitors.

Material name Specific capacitance Energy density Cycling stability Reference

AWC// MnO2@WC ASC 14.4 F cm-3 at 1 mA cm-2 16 Wh kg-1 93% (10000) Ref. 1

CW/PVA-KOH/Co(OH)2@CW 34.8 F g-1 at 1 mA cm-2 10.87 Wh kg−1 85% (10000) Ref. 2

CA//CA-PANI 64.5 F g-1 at 2.8 A g-1 24.4 Wh kg−1 98% (3000) Ref. 3

CNFs/CNTs/PANI SC 57 F g-1 at 0.5 A g-1 5.1 Wh kg−1 92% (10000) Ref. 4

PANI/NCNT SC 128 F g-1 at 2.47 A g-1 11.11 Wh kg−1 92% (10000) Ref. 5

PANI-CNT SC 80 F g-1 at 0.5 A g-1 7.11 Wh kg−1 81% (1000) Ref. 6

PANI/RGO wood SC 0.89 F cm-2 at 1 mV s-1 107.70 mWh cm-2 88.11% (5000) Ref. 7

WTSS/Ppy SC 0.61 F cm-2 at 1 mV s-1 48.83 mWh cm-2 87.5% (5000) Ref. 8

PANI/P-MWCNT SC 95.7 F g-1 at 0.5 A g-1 8.2 Wh kg−1 71.8% (2000) Ref. 9

CDP-Pani/CNT SC 107.4 F g-1 at 1 A g-1 21.0 Wh kg−1 97% (5000) Ref. 10

RGO/UCNTs/PANI 53.1 F g-1 at 0.5 A g-1 7.4 Wh kg−1 80.5% (2000) Ref. 11

PANI-CNT/ExGP 79.9 F g-1 at 1 A g-1 7.1 Wh kg−1 77.6% (3000) Ref. 12

PANI@CNT/AWC ASC 90.9 F g-1 at 5 mA cm-2 40.5 Wh kg-1 93.74% (10000) This work



Figure S8: Schematic diagram of connections between four parallel supercapacitors 

and external circuits
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