Electronic Supplementary Information

Microwave assisted ionic liquid route to prepare high purity bivalent

Mn₅O₈ nanoplates for 5-hydroxymethylfurfural oxidation

Lifang Chen,*a Ting Zhang, Hongye Cheng, Ryan M. Richards^b and Zhiwen Qia

^a State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East

China University of Science and Technology, Shanghai 200237, P.R. China

^b Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA.

Corresponding Author

*Email: Ichen@ecust.edu.cn

Atom	Туре	X	У	Z
Mn1	Mn +4	0	0	0.50
Mn2	Mn +4	0	0.262	0
Mn3	Mn +2	0.73	0	0.662
01	O-2	0.098	0.234	0.394
02	O-2	0.096	0	0.905
03	O-2	0.611	0	0.925

Table S1 Crystal structural parameters of Mn_5O_8 .

Space group: C 1 2/m 1

a = 10.3470 Å, b = 5.7240 Å, c=4.8520 Å, α = 90°, β = 109.410°, γ = 90°

 $V = 273.628 \text{ Å}^3$

Fig. S1 Fast Fourier transform (FFT, inset) and inverse FFT (IFFT) image of Mn_5O_8 .

Fig. S2 SEM image of Mn_5O_8 by conventional hydrothermal method.

Fig. S3 SEM image of prepared Mn₅O₈ precursor.

Fig. S4 SEM images of Mn_5O_8 -[BMim]BF₄ (a) and Mn_5O_8 -[BMim]PF₆ (b).

Fig. S5 Arrhenius plot for the aerobic oxidation of HMF.

Fig. S6 XPS spectrum Mn 3s of fresh and used Mn_5O_8 samples.